作者: | Chunyu Jin,Jing Li,Christopher D. Green,Xiaoming Yu,Xia Tang,Dali Han,Bo Xian,Dan Wang,Xinxin Huang,Xiongwen Cao,Zheng Yan,Lei Hou,Jiancheng Liu,Nicholas Shukeir,Philipp Khaitovich,Charlie D. Chen,Hong Zhang,Thomas Jenuwein,Jing-Dong J. Han |
---|---|
刊物名称: | Cell Metabolism |
DOI: | |
联系作者: | |
英文联系作者: | |
卷: | |
摘要: | Epigenetic modifications are thought to be important for gene expression changes during development and aging. However, besides the Sir2 histone deacetylase in somatic tissues and H3K4 trimethylation in germlines, there is scant evidence implicating epigenetic regulations in aging. The insulin/IGF-1 signaling (IIS) pathway is a major life span regulatory pathway. Here, we show that progressive increases in gene expression and loss of H3K27me3 on IIS components are due, at least in part, to increased activity of the H3K27 demethylase UTX-1 during aging. RNAi of the utx-1 gene extended the mean life span of C. elegans by 30%, dependent on DAF-16 activity and not additive in daf-2 mutants. The loss of utx-1 increased H3K27me3 on the Igf1r/daf-2 gene and decreased IIS activity, leading to a more naive epigenetic state. Like stem cell reprogramming, our results suggest that reestablishment of epigenetic marks lost during aging might help reset the developmental age of animal cells. |