Synaptotagmin 1 directs repetitive release by coupling vesicle exocytosis to the Rab3 cycle
    作者: Yunsheng Cheng,Jiaming Wang,Yu Wang,Mei Ding
    刊物名称: eLIFE
    DOI:
    联系作者:
    英文联系作者:
    卷:
    摘要:
    In response to Ca2+ influx, a synapse needs to release neurotransmitters quickly while immediately preparing for repeat firing. How this harmonization is achieved is not known. Here, we found that the Ca2+ sensor synaptotagmin 1 orchestrates the membrane association/disassociation cycle of Rab3, which functions in activity-dependent recruitment of synaptic vesicles. In the absence of Ca2+, synaptotagmin 1 binds to Rab3 GTPase activating protein (GAP) and inhibits the GTP hydrolysis of Rab3 protein. Rab3 GAP resides on synaptic vesicles and synaptotagmin 1 is essential for the synaptic localization of Rab3 GAP. In the presence of Ca2+, synaptotagmin 1 releases Rab3 GAP and promotes membrane disassociation of Rab3. Without synaptotagmin 1, the tight coupling between vesicle exocytosis and Rab3 membrane disassociation is disrupted. We uncovered the long-sought molecular apparatus linking vesicle exocytosis to Rab3 cycling and we also revealed the important function of synaptotagmin 1 in repetitive synaptic vesicle release.