作者: | Xiangbin Chen,Qinfang Yao,Xiuhua Gao,Caifu Jiang,Nicholas P. Harberd,Xiangdong Fu |
---|---|
刊物名称: | Current Biology |
DOI: | |
联系作者: | |
英文联系作者: | |
卷: | |
摘要: | Coordination of shoot photosynthetic carbon fixation with root inorganic nitrogen uptake optimizes plant performance in a fluctuating environment [ 1 ]. However, the molecular basis of this long-distance shoot-root coordination is little understood. Here we show that Arabidopsis ELONGATED HYPOCOTYL5 (HY5), a bZIP transcription factor that regulates growth in response to light [ 2, 3 ], is a shoot-to-root mobile signal that mediates light promotion of root growth and nitrate uptake. Shoot-derived HY5 auto-activates root HY5 and also promotes root nitrate uptake by activating NRT2.1, a gene encoding a high-affinity nitrate transporter [ 4 ]. In the shoot, HY5 promotes carbon assimilation and translocation, whereas in the root, HY5 activation of NRT2.1expression and nitrate uptake is potentiated by increased carbon photoassimilate (sucrose) levels. We further show that HY5 function is fluence-rate modulated and enables homeostatic maintenance of carbon-nitrogen balance in different light environments. Thus, mobile HY5 coordinates light-responsive carbon and nitrogen metabolism, and hence shoot and root growth, in a whole-organismal response to ambient light fluctuations. |