作者: | Qing Wang, Jinqiang Nian, Xianzhi Xie, Hong Yu, Jian Zhang, Jiaoteng Bai, Guojun Dong, Jiang Hu, Bo Bai, Lichao Chen, Qingjun Xie, Jian Feng, Xiaolu Yang, Juli Peng, Fan Chen, Qian Qian, Jiayang Li, Jianru Zuo |
---|---|
刊物名称: | Nature Communications |
DOI: | |
联系作者: | |
英文联系作者: | |
卷: | |
摘要: | In crops, nitrogen directly determines productivity and biomass. However, the improvement of nitrogen utilization efficiency (NUE) is still a major challenge in modern agriculture. Here, we report the characterization of are1, a genetic suppressor of a rice fd-gogat mutant defective in nitrogen assimilation. ARE1 is a highly conserved gene, encoding a chloroplast-localized protein. Loss-of-function mutations in ARE1 cause delayed senescence and result in 10–20% grain yield increases, hence enhance NUE under nitrogen-limiting conditions. Analysis of a panel of 2155 rice varieties reveals that 18% indica and 48% aus accessions carry small insertions in the ARE1 promoter, which result in a reduction in ARE1 expression and an increase in grain yield under nitrogen-limiting conditions. We propose that ARE1 is a key mediator of NUE and represents a promising target for breeding high-yield cultivars under nitrogen-limiting condition. |