Ligand-triggered Allosteric ADP Release Primes a Plant NLR Complex
    作者: Jizong Wang, Jia Wang, Meijuan Hu, Shan Wu, Jinfeng Qi, Guoxun Wang, Zhifu Han, Yijun Qi, Ning Gao, Hong-Wei Wang, Jian-Min Zhou, Jijie Chai
    刊物名称: Science
    DOI:
    联系作者:
    英文联系作者:
    卷:
    摘要:
    Pathogen recognition by nucleotide-binding (NB), leucine-rich repeat (LRR) receptors (NLRs) plays roles in plant immunity. The Xanthomonas campestris pv. campestris effector AvrAC uridylylates the Arabidopsis PBL2 kinase, and the latter (PBL2UMP) acts as a ligand to activate the NLR ZAR1 precomplexed with the RKS1 pseudokinase. Here we report the cryo–electron microscopy structures of ZAR1-RKS1 and ZAR1-RKS1-PBL2UMP in an inactive and intermediate state, respectively. The ZAR1LRR domain, compared with animal NLRLRR domains, is differently positioned to sequester ZAR1 in an inactive state. Recognition of PBL2UMP is exclusively through RKS1, which interacts with ZAR1LRR. PBL2UMP binding stabilizes the RKS1 activation segment, which sterically blocks ZAR1 adenosine diphosphate (ADP) binding. This engenders a more flexible NB domain without conformational changes in the other ZAR1 domains. Our study provides a structural template for understanding plant NLRs.