AtPRMT3-RPS2B Promotes Ribosome Biogenesis and Coordinates Growth and Cold Adaptation Trade-Off
    作者: Zhen Wang, Xiaofan Zhang, Chunyan Liu, Susan Duncan, Runlai Hang, Jing Sun, Lilan Luo, Yiliang Ding & Xiaofeng Cao
    刊物名称: Nature Communications
    DOI:
    联系作者:
    英文联系作者:
    卷:
    摘要:
    Translation, a fundamental process regulating cellular growth and proliferation, relies on functional ribosomes. As sessile organisms, plants have evolved adaptive strategies to maintain a delicate balance between growth and stress response. But the underlying mechanisms, particularly on the translational level, remain less understood. In this study, we revealed the mechanisms of AtPRMT3-RPS2B in orchestrating ribosome assembly and managing translational regulation. Through a forward genetic screen, we identified PDCD2-D1 as a suppressor gene restoring abnormal development and ribosome biogenesis in atprmt3-2 mutants. Our findings confirmed that PDCD2 interacts with AtPRMT3-RPS2B, and facilitates pre-ribosome transport through nuclear pore complex, finally ensuring normal ribosome translation in the cytoplasm. Additionally, the dysfunction of AtPRMT3-RPS2B was found to enhance freezing tolerance. Moreover, we revealed that AtPRMT3-RPS2B promotes the translation of housekeeping mRNAs while concurrently repressing stress-related mRNAs. In summary, our study sheds light on the regulatory roles of AtPRMT3-RPS2B in ribosome assembly and translational balance, enabling the trade-off between growth and stress.