| 作者: | Cong Lei, Xilong Li, Wenjia Li, Zihan Chen, Simiao Liu, Bo Cheng, Yili Hu, Qitao Song, Yahong Qiu, Yilan Zhou, Xiangbing Meng, Hong Yu, Wen Zhou, Xing Chen, Jiayang Li |
|---|---|
| 刊物名称: | Molecular & Cellular Proteomics |
| DOI: | |
| 联系作者: | |
| 英文联系作者: | |
| 发布时间: | 2025-01-20 |
| 卷: | |
| 摘要: | As a ubiquitous and essential posttranslational modification occurring in both plants and animals, protein N-linked glycosylation regulates various important biological processes. Unlike the well-studied animal N-glycoproteomes, the landscape of rice N-glycoproteome remains largely unexplored. Here, by developing a chemical glycoproteomic strategy based on metabolic glycan labeling (MGL), we report a comprehensive profiling of the N-glycoproteome in rice seedlings. The rice seedlings are incubated with N-azidoacetylgalactosamine (GalNAz) - a monosaccharide analog containing a bioorthogonal functional group - to metabolically label N-glycans, followed by conjugation with an affinity probe via click chemistry for enrichment of the N-glycoproteins. Subsequent mass spectrometry analyses identify a total of 403 N-glycosylation sites and 673 N-glycosylated proteins, which are involved in various important biological processes. In particular, the core components of the endoplasmic reticulum (ER)-associated protein degradation (ERAD) machinery are N-glycosylated, and the N-glycosylation is important for the ERAD-L function. This work not only provides an invaluable resource for studying rice N-glycosylation, but also demonstrates the applicability of MGL in glycoproteomic profiling for crop species. |