|
A Multi-Axis Robot-Based Bioprinting System Supporting Natural Cell Function Preservation and Cardiac Tissue Fabrication
Zeyu Zhang, Chenming Wu, Chengkai Dai, Qingqing Shi, Guoxin Fang, Dongfang Xie, Xiangjie Zhao, Yong-Jin Liu, Charlie C.L. Wang, Xiu-Jie Wang
Bioactive Materials
Abstract
Despite the recent advances in artificial tissue and organ engineering, how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine. Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues, yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production. Here, we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter, therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions. We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing. Together with a self-designed bioreactor and a repeated print-and-culture strategy, our bioprinting system is capable to generate vascularized, contractible, and long-term survived cardiac tissues. Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs.
|
论文编号: |
DOI:10.1016/j.bioactmat.2022.02.009 |
论文题目: |
A Multi-Axis Robot-Based Bioprinting System Supporting Natural Cell Function Preservation and Cardiac Tissue Fabrication |
英文论文题目: |
A Multi-Axis Robot-Based Bioprinting System Supporting Natural Cell Function Preservation and Cardiac Tissue Fabrication |
第一作者: |
Zeyu Zhang, Chenming Wu, Chengkai Dai, Qingqing Shi, Guoxin Fang, Dongfang Xie, Xiangjie Zhao, Yong-Jin Liu, Charlie C.L. Wang, Xiu-Jie Wang |
英文第一作者: |
Zeyu Zhang, Chenming Wu, Chengkai Dai, Qingqing Shi, Guoxin Fang, Dongfang Xie, Xiangjie Zhao, Yong-Jin Liu, Charlie C.L. Wang, Xiu-Jie Wang |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2022-02-21 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Despite the recent advances in artificial tissue and organ engineering, how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine. Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues, yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production. Here, we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter, therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions. We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing. Together with a self-designed bioreactor and a repeated print-and-culture strategy, our bioprinting system is capable to generate vascularized, contractible, and long-term survived cardiac tissues. Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs. |
英文摘要: |
Despite the recent advances in artificial tissue and organ engineering, how to generate large size viable and functional complex organs still remains as a grand challenge for regenerative medicine. Three-dimensional bioprinting has demonstrated its advantages as one of the major methods in fabricating simple tissues, yet it still faces difficulties to generate vasculatures and preserve cell functions in complex organ production. Here, we overcome the limitations of conventional bioprinting systems by converting a six degree-of-freedom robotic arm into a bioprinter, therefore enables cell printing on 3D complex-shaped vascular scaffolds from all directions. We also developed an oil bath-based cell printing method to better preserve cell natural functions after printing. Together with a self-designed bioreactor and a repeated print-and-culture strategy, our bioprinting system is capable to generate vascularized, contractible, and long-term survived cardiac tissues. Such bioprinting strategy mimics the in vivo organ development process and presents a promising solution for in vitro fabrication of complex organs. |
刊物名称: |
Bioactive Materials |
英文刊物名称: |
Bioactive Materials |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
Zeyu Zhang, Chenming Wu, Chengkai Dai, Qingqing Shi, Guoxin Fang, Dongfang Xie, Xiangjie Zhao, Yong-Jin Liu, Charlie C.L. Wang, Xiu-Jie Wang. A Multi-Axis Robot-Based Bioprinting System Supporting Natural Cell Function Preservation and Cardiac Tissue Fabrication. Bioactive Materials. DOI:10.1016/j.bioactmat.2022.02.009 |
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|