|
Oshypk-Mediated Protein N-Terminal Acetylation Coordinates Plant Development and Abiotic Stress Responses in Rice
Xiaodi Gong, Yaqian Huang, Yan Liang, Yundong Yuan, Yuhao Liu, Tongwen Han, Shujia Li, Hengbin Gao, Bo Lv, Xiahe Huang, Eric Linster, Yingchun Wang, Markus Wirtz, Yonghong Wang
Molecular Plant
Abstract
N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of the humans and plants proteomes are acetylated by ribosome-associated N-terminal acetyltransferases A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to the perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice.
|
论文编号: |
DOI:10.1016/j.molp.2022.03.001 |
论文题目: |
Oshypk-Mediated Protein N-Terminal Acetylation Coordinates Plant Development and Abiotic Stress Responses in Rice |
英文论文题目: |
Oshypk-Mediated Protein N-Terminal Acetylation Coordinates Plant Development and Abiotic Stress Responses in Rice |
第一作者: |
Xiaodi Gong, Yaqian Huang, Yan Liang, Yundong Yuan, Yuhao Liu, Tongwen Han, Shujia Li, Hengbin Gao, Bo Lv, Xiahe Huang, Eric Linster, Yingchun Wang, Markus Wirtz, Yonghong Wang |
英文第一作者: |
Xiaodi Gong, Yaqian Huang, Yan Liang, Yundong Yuan, Yuhao Liu, Tongwen Han, Shujia Li, Hengbin Gao, Bo Lv, Xiahe Huang, Eric Linster, Yingchun Wang, Markus Wirtz, Yonghong Wang |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2022-04-07 |
卷: |
|
期: |
|
页码: |
|
摘要: |
N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of the humans and plants proteomes are acetylated by ribosome-associated N-terminal acetyltransferases A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to the perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice. |
英文摘要: |
N-terminal acetylation is one of the most common protein modifications in eukaryotes, and approximately 40% of the humans and plants proteomes are acetylated by ribosome-associated N-terminal acetyltransferases A (NatA) in a co-translational manner. However, the in vivo regulatory mechanism of NatA and the global impact of NatA-mediated N-terminal acetylation on protein fate remain unclear. Here, we identify Huntingtin Yeast partner K (HYPK), an evolutionarily conserved chaperone-like protein, as a positive regulator of NatA activity in rice. We found that loss of OsHYPK leads to developmental defects in rice plant architecture but increased resistance to abiotic stresses, attributable to the perturbation of the N-terminal acetylome and accelerated global protein turnover. Furthermore, we demonstrated that OsHYPK is also a substrate of NatA and that N-terminal acetylation of OsHYPK promotes its own degradation, probably through the Ac/N-degron pathway, which could be induced by abiotic stresses. Taken together, our findings suggest that the OsHYPK-NatA complex plays a critical role in coordinating plant development and stress responses by dynamically regulating NatA-mediated N-terminal acetylation and global protein turnover, which are essential for maintaining adaptive phenotypic plasticity in rice. |
刊物名称: |
Molecular Plant |
英文刊物名称: |
Molecular Plant |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
Xiaodi Gong, Yaqian Huang, Yan Liang, Yundong Yuan, Yuhao Liu, Tongwen Han, Shujia Li, Hengbin Gao, Bo Lv, Xiahe Huang, Eric Linster, Yingchun Wang, Markus Wirtz, Yonghong Wang. Oshypk-Mediated Protein N-Terminal Acetylation Coordinates Plant Development and Abiotic Stress Responses in Rice. Molecular Plant. DOI:10.1016/j.molp.2022.03.001 |
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|