|
Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features
He Tian, Zhen Ni, Sin Man Lam, Wenxi Jiang, Fengjuan Li, Jie Du, Yuan Wang, Guanghou Shui
Small Methods
Abstract
Mass spectrometry-based metabolomics has emerged as a powerful technique for biomedical research, although technical issues with its analytical precision and structural characterization remain. Herein, a robust non-targeted strategy for accurate quantitation and precise profiling of metabolomes is developed and applied to investigate plasma metabolic features associated with human aging. A comprehensive set of isotope-labeled standards (ISs) covering major metabolic pathways is incorporated to quantify polar metabolites. Matching rules to select ISs for calibration follow a primary criterion of minimal coefficients of variations (COVs). If minimal COVs between specific ISs for a particular metabolite fall within 5% window, a further selection of ISs is conducted based on structural similarities and proximity in retention time. The introduction and refined selection of appropriate ISs for quantitation reduces the COVs of 480 identified metabolites in quality control samples from 14.3% to 9.8% and facilitates identification of additional metabolite. Finally, the precise metabolomics approach reveals perturbations in a diverse array of metabolic pathways across aging that principally implicate steroid metabolism, amino acid metabolism, lipid metabolism, and purine metabolism, which allows the authors to draw correlates to the pathology of various age-related diseases. These findings provide clues for the prevention and treatment of these age-related diseases.
|
论文编号: |
DOI:10.1002/smtd.202200130 |
论文题目: |
Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features |
英文论文题目: |
Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features |
第一作者: |
He Tian, Zhen Ni, Sin Man Lam, Wenxi Jiang, Fengjuan Li, Jie Du, Yuan Wang, Guanghou Shui |
英文第一作者: |
He Tian, Zhen Ni, Sin Man Lam, Wenxi Jiang, Fengjuan Li, Jie Du, Yuan Wang, Guanghou Shui |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2022-05-10 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Mass spectrometry-based metabolomics has emerged as a powerful technique for biomedical research, although technical issues with its analytical precision and structural characterization remain. Herein, a robust non-targeted strategy for accurate quantitation and precise profiling of metabolomes is developed and applied to investigate plasma metabolic features associated with human aging. A comprehensive set of isotope-labeled standards (ISs) covering major metabolic pathways is incorporated to quantify polar metabolites. Matching rules to select ISs for calibration follow a primary criterion of minimal coefficients of variations (COVs). If minimal COVs between specific ISs for a particular metabolite fall within 5% window, a further selection of ISs is conducted based on structural similarities and proximity in retention time. The introduction and refined selection of appropriate ISs for quantitation reduces the COVs of 480 identified metabolites in quality control samples from 14.3% to 9.8% and facilitates identification of additional metabolite. Finally, the precise metabolomics approach reveals perturbations in a diverse array of metabolic pathways across aging that principally implicate steroid metabolism, amino acid metabolism, lipid metabolism, and purine metabolism, which allows the authors to draw correlates to the pathology of various age-related diseases. These findings provide clues for the prevention and treatment of these age-related diseases. |
英文摘要: |
Mass spectrometry-based metabolomics has emerged as a powerful technique for biomedical research, although technical issues with its analytical precision and structural characterization remain. Herein, a robust non-targeted strategy for accurate quantitation and precise profiling of metabolomes is developed and applied to investigate plasma metabolic features associated with human aging. A comprehensive set of isotope-labeled standards (ISs) covering major metabolic pathways is incorporated to quantify polar metabolites. Matching rules to select ISs for calibration follow a primary criterion of minimal coefficients of variations (COVs). If minimal COVs between specific ISs for a particular metabolite fall within 5% window, a further selection of ISs is conducted based on structural similarities and proximity in retention time. The introduction and refined selection of appropriate ISs for quantitation reduces the COVs of 480 identified metabolites in quality control samples from 14.3% to 9.8% and facilitates identification of additional metabolite. Finally, the precise metabolomics approach reveals perturbations in a diverse array of metabolic pathways across aging that principally implicate steroid metabolism, amino acid metabolism, lipid metabolism, and purine metabolism, which allows the authors to draw correlates to the pathology of various age-related diseases. These findings provide clues for the prevention and treatment of these age-related diseases. |
刊物名称: |
Small Methods |
英文刊物名称: |
Small Methods |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
He Tian, Zhen Ni, Sin Man Lam, Wenxi Jiang, Fengjuan Li, Jie Du, Yuan Wang, Guanghou Shui. Precise Metabolomics Reveals a Diversity of Aging-Associated Metabolic Features. Small Methods. DOI:10.1002/smtd.202200130. |
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|