|
Social Isolation and the Brain: Effects and Mechanisms
Ying Xiong, Huilin Hong, Cirong Liu & Yong Q. Zhang
Molecular Psychiatry
Abstract
An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans.
|
论文编号: |
DOI:10.1038/s41380-022-01835-w |
论文题目: |
Social Isolation and the Brain: Effects and Mechanisms |
英文论文题目: |
Social Isolation and the Brain: Effects and Mechanisms |
第一作者: |
Ying Xiong, Huilin Hong, Cirong Liu & Yong Q. Zhang |
英文第一作者: |
Ying Xiong, Huilin Hong, Cirong Liu & Yong Q. Zhang |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2022-12-01 |
卷: |
|
期: |
|
页码: |
|
摘要: |
An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans. |
英文摘要: |
An obvious consequence of the coronavirus disease (COVID-19) pandemic is the worldwide reduction in social interaction, which is associated with many adverse effects on health in humans from babies to adults. Although social development under normal or isolated environments has been studied since the 1940s, the mechanism underlying social isolation (SI)-induced brain dysfunction remains poorly understood, possibly due to the complexity of SI in humans and translational gaps in findings from animal models. Herein, we present a systematic review that focused on brain changes at the molecular, cellular, structural and functional levels induced by SI at different ages and in different animal models. SI studies in humans and animal models revealed common socioemotional and cognitive deficits caused by SI in early life and an increased occurrence of depression and anxiety induced by SI during later stages of life. Altered neurotransmission and neural circuitry as well as abnormal development and function of glial cells in specific brain regions may contribute to the abnormal emotions and behaviors induced by SI. We highlight distinct alterations in oligodendrocyte progenitor cell differentiation and oligodendrocyte maturation caused by SI in early life and later stages of life, respectively, which may affect neural circuit formation and function and result in diverse brain dysfunctions. To further bridge animal and human SI studies, we propose alternative animal models with brain structures and complex social behaviors similar to those of humans. |
刊物名称: |
Molecular Psychiatry |
英文刊物名称: |
Molecular Psychiatry |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|