|
Distance-Dependent Inhibition of Translation Initiation by Downstream Out-of-Frame AUGs is Consistent with a Brownian Ratchet Process of Ribosome Scanning
Ke Li, Jinhui Kong, Shuo Zhang, Tong Zhao, and Wenfeng Qian
Genome Biology
Abstract
Background
Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5′–3′ movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5′ proximal AUG codon (i.e., the first-AUG rule).
Results
We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5′–3′ and 3′–5′ oscillations with a net 5′–3′ movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans.
Conclusions
Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution.
|
论文编号: |
DOI:10.1186/s13059-022-02829-1 |
论文题目: |
Distance-Dependent Inhibition of Translation Initiation by Downstream Out-of-Frame AUGs is Consistent with a Brownian Ratchet Process of Ribosome Scanning |
英文论文题目: |
Distance-Dependent Inhibition of Translation Initiation by Downstream Out-of-Frame AUGs is Consistent with a Brownian Ratchet Process of Ribosome Scanning |
第一作者: |
Ke Li, Jinhui Kong, Shuo Zhang, Tong Zhao, and Wenfeng Qian |
英文第一作者: |
Ke Li, Jinhui Kong, Shuo Zhang, Tong Zhao, and Wenfeng Qian |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2022-12-20 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Background
Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5′–3′ movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5′ proximal AUG codon (i.e., the first-AUG rule).
Results
We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5′–3′ and 3′–5′ oscillations with a net 5′–3′ movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans.
Conclusions
Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution. |
英文摘要: |
Background
Eukaryotic ribosomes are widely presumed to scan mRNA for the AUG codon to initiate translation in a strictly 5′–3′ movement (i.e., strictly unidirectional scanning model), so that ribosomes initiate translation exclusively at the 5′ proximal AUG codon (i.e., the first-AUG rule).
Results
We generate 13,437 yeast variants, each with an ATG triplet placed downstream (dATGs) of the annotated ATG (aATG) codon of a green fluorescent protein. We find that out-of-frame dATGs can inhibit translation at the aATG, but with diminishing strength over increasing distance between aATG and dATG, undetectable beyond ~17 nt. This phenomenon is best explained by a Brownian ratchet mechanism of ribosome scanning, in which the ribosome uses small-amplitude 5′–3′ and 3′–5′ oscillations with a net 5′–3′ movement to scan the AUG codon, thereby leading to competition for translation initiation between aAUG and a proximal dAUG. This scanning model further predicts that the inhibitory effect induced by an out-of-frame upstream AUG triplet (uAUG) will diminish as uAUG approaches aAUG, which is indeed observed among the 15,586 uATG variants generated in this study. Computational simulations suggest that each triplet is scanned back and forth approximately ten times until the ribosome eventually migrates to downstream regions. Moreover, this scanning process could constrain the evolution of sequences downstream of the aATG to minimize proximal out-of-frame dATG triplets in yeast and humans.
Conclusions
Collectively, our findings uncover the basic process by which eukaryotic ribosomes scan for initiation codons, and how this process could shape eukaryotic genome evolution. |
刊物名称: |
Genome Biology |
英文刊物名称: |
Genome Biology |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|