|
Tuning Plant Phenotypes by Precise, Graded Downregulation of Gene Expression
Chenxiao Xue, Fengti Qiu, Yuxiang Wang, Boshu Li, Kevin Tianmeng Zhao, Kunling Chen, Caixia Gao
NBT Nature Biotechnology
Abstract
The ability to control gene expression and generate quantitative phenotypic changes is essential for breeding new and desired traits into crops. Here we report an efficient, facile method for downregulating gene expression to predictable, desired levels by engineering upstream open reading frames (uORFs). We used base editing or prime editing to generate de novo uORFs or to extend existing uORFs by mutating their stop codons. By combining these approaches, we generated a suite of uORFs that incrementally downregulate the translation of primary open reading frames (pORFs) to 2.5–84.9% of the wild-type level. By editing the 5′ untranslated region of OsDLT, which encodes a member of the GRAS family and is involved in the brassinosteroid transduction pathway, we obtained, as predicted, a series of rice plants with varied plant heights and tiller numbers. These methods offer an efficient way to obtain genome-edited plants with graded expression of traits.
|
论文编号: |
DOI:10.1038/s41587-023-01707-w |
论文题目: |
Tuning Plant Phenotypes by Precise, Graded Downregulation of Gene Expression |
英文论文题目: |
Tuning Plant Phenotypes by Precise, Graded Downregulation of Gene Expression |
第一作者: |
Chenxiao Xue, Fengti Qiu, Yuxiang Wang, Boshu Li, Kevin Tianmeng Zhao, Kunling Chen, Caixia Gao |
英文第一作者: |
Chenxiao Xue, Fengti Qiu, Yuxiang Wang, Boshu Li, Kevin Tianmeng Zhao, Kunling Chen, Caixia Gao |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2023-03-10 |
卷: |
|
期: |
|
页码: |
|
摘要: |
The ability to control gene expression and generate quantitative phenotypic changes is essential for breeding new and desired traits into crops. Here we report an efficient, facile method for downregulating gene expression to predictable, desired levels by engineering upstream open reading frames (uORFs). We used base editing or prime editing to generate de novo uORFs or to extend existing uORFs by mutating their stop codons. By combining these approaches, we generated a suite of uORFs that incrementally downregulate the translation of primary open reading frames (pORFs) to 2.5–84.9% of the wild-type level. By editing the 5′ untranslated region of OsDLT, which encodes a member of the GRAS family and is involved in the brassinosteroid transduction pathway, we obtained, as predicted, a series of rice plants with varied plant heights and tiller numbers. These methods offer an efficient way to obtain genome-edited plants with graded expression of traits. |
英文摘要: |
The ability to control gene expression and generate quantitative phenotypic changes is essential for breeding new and desired traits into crops. Here we report an efficient, facile method for downregulating gene expression to predictable, desired levels by engineering upstream open reading frames (uORFs). We used base editing or prime editing to generate de novo uORFs or to extend existing uORFs by mutating their stop codons. By combining these approaches, we generated a suite of uORFs that incrementally downregulate the translation of primary open reading frames (pORFs) to 2.5–84.9% of the wild-type level. By editing the 5′ untranslated region of OsDLT, which encodes a member of the GRAS family and is involved in the brassinosteroid transduction pathway, we obtained, as predicted, a series of rice plants with varied plant heights and tiller numbers. These methods offer an efficient way to obtain genome-edited plants with graded expression of traits. |
刊物名称: |
NBT Nature Biotechnology |
英文刊物名称: |
NBT Nature Biotechnology |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|