|
Spatial Proteome Reorganization of a Photosynthetic Model Cyanobacterium in Response to Abiotic Stresses
Yan Wang, Haitao Ge, Zhen Xiao, Chengcheng Huang, Gaojie Wang, Xiaoxiao Duan, Limin Zheng,Jinghui Dong, Xiahe Huang, Yuanya Zhang, Hongyu An, Wu Xu, and Yingchun Wang
Journal of Proteome Research
Abstract
Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stressinduced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold -induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiencyand nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments.
|
论文编号: |
DOI:10.1021/acs.jproteome.2c00759 |
论文题目: |
Spatial Proteome Reorganization of a Photosynthetic Model Cyanobacterium in Response to Abiotic Stresses |
英文论文题目: |
Spatial Proteome Reorganization of a Photosynthetic Model Cyanobacterium in Response to Abiotic Stresses |
第一作者: |
Yan Wang, Haitao Ge, Zhen Xiao, Chengcheng Huang, Gaojie Wang, Xiaoxiao Duan, Limin Zheng,Jinghui Dong, Xiahe Huang, Yuanya Zhang, Hongyu An, Wu Xu, and Yingchun Wang |
英文第一作者: |
Yan Wang, Haitao Ge, Zhen Xiao, Chengcheng Huang, Gaojie Wang, Xiaoxiao Duan, Limin Zheng,Jinghui Dong, Xiahe Huang, Yuanya Zhang, Hongyu An, Wu Xu, and Yingchun Wang |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2023-03-21 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stressinduced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold -induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiencyand nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments. |
英文摘要: |
Spatial proteome reorganization in response to a changing environment represents a different layer of adaptation mechanism in addition to differential expression of a subset of stress responsive genes in photosynthetic organisms. Profiling such reorganization events is critically important to extend our understanding how photosynthetic organisms adapt to adverse environments. Thus, we treated a unicellular photosynthetic model cyanobacterium, Synechocystis sp. PCC 6803 (hereafter referred to as Synechocystis), with five different types of abiotic stresses including nitrogen starvation, iron deficiency, cold, heat, and darkness, and systematically identified proteins showing stressinduced differential expression and/or redistribution between the membrane and the soluble fractions using a quantitative proteomics approach. A number of proteins showing such a redistribution in response to a single or multiple types of abiotic stresses were identified. These include 12 ribosomal proteins displaying unanimous cold -induced redistribution to the membrane and the protein FurA, a master regulator of iron acquisition, displaying iron deficiencyand nitrogen starvation-induced redistribution to the membrane. Such findings shed light on a novel regulatory mechanism underlying the corresponding stress responses, and establish the results in the present study as an important resource for future studies intended to understand how photosynthetic organisms cope with adverse environments. |
刊物名称: |
Journal of Proteome Research |
英文刊物名称: |
Journal of Proteome Research |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|