|
De Novo Domestication: Retrace the History of Agriculture to Design Future Crops
Jingkun Zhang, Hong Yu and Jiayang Li
Current Opinion in Biotechnology
Abstract
Certain crops were domesticated from their wild progenitors and have served as the major staple food since then, but now suffered from the limited genetic diversity in breeding. Enormous wild species possess unique advantages such as stress tolerance, polyploidy, perennial habit, and natural nutrition. However, it remains a big challenge to utilize wild species in conventional breeding. With recent advances in biotechnologies, one new breeding strategy, de novo domestication, has emerged and been demonstrated by pioneer work. Here, we review the emergence and milestone progress of de novo domestication and discuss how wild relatives could be exploited into new types of crops. With the understanding of the genetic basis of crop domestication and the development of biotechnologies, various elite wild germplasms will be designed and practiced to fulfill particular breeding goals and create new types of crops. De novo domestication is paving a new way for breeding the future.
|
论文编号: |
DOI:10.1016/j.copbio.2023.102946 |
论文题目: |
De Novo Domestication: Retrace the History of Agriculture to Design Future Crops |
英文论文题目: |
De Novo Domestication: Retrace the History of Agriculture to Design Future Crops |
第一作者: |
Jingkun Zhang, Hong Yu and Jiayang Li |
英文第一作者: |
Jingkun Zhang, Hong Yu and Jiayang Li |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2023-06-06 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Certain crops were domesticated from their wild progenitors and have served as the major staple food since then, but now suffered from the limited genetic diversity in breeding. Enormous wild species possess unique advantages such as stress tolerance, polyploidy, perennial habit, and natural nutrition. However, it remains a big challenge to utilize wild species in conventional breeding. With recent advances in biotechnologies, one new breeding strategy, de novo domestication, has emerged and been demonstrated by pioneer work. Here, we review the emergence and milestone progress of de novo domestication and discuss how wild relatives could be exploited into new types of crops. With the understanding of the genetic basis of crop domestication and the development of biotechnologies, various elite wild germplasms will be designed and practiced to fulfill particular breeding goals and create new types of crops. De novo domestication is paving a new way for breeding the future. |
英文摘要: |
Certain crops were domesticated from their wild progenitors and have served as the major staple food since then, but now suffered from the limited genetic diversity in breeding. Enormous wild species possess unique advantages such as stress tolerance, polyploidy, perennial habit, and natural nutrition. However, it remains a big challenge to utilize wild species in conventional breeding. With recent advances in biotechnologies, one new breeding strategy, de novo domestication, has emerged and been demonstrated by pioneer work. Here, we review the emergence and milestone progress of de novo domestication and discuss how wild relatives could be exploited into new types of crops. With the understanding of the genetic basis of crop domestication and the development of biotechnologies, various elite wild germplasms will be designed and practiced to fulfill particular breeding goals and create new types of crops. De novo domestication is paving a new way for breeding the future. |
刊物名称: |
Current Opinion in Biotechnology |
英文刊物名称: |
Current Opinion in Biotechnology |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|