|
A High-Resolution Genotype–Phenotype Map Identifies the TaSPL17 Controlling Grain Number and Size in Wheat
Yangyang Liu, Jun Chen, Changbin Yin, Ziying Wang, He Wu, Kuocheng Shen, Zhiliang Zhang, Lipeng Kang, Song Xu, Aoyue Bi, Xuebo Zhao, Daxing Xu, Zhonghu He, Xueyong Zhang, Chenyang Hao, Jianhui Wu, Yan Gong, Xuchang Yu, Zhiwen Sun, Botao Ye, Danni Liu, Lili Zhang, Liping Shen, Yuanfeng Hao, Youzhi Ma, Fei Lu & Zifeng Guo
Genome Biology
Abstract
Background
Large-scale genotype–phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments.
Results
We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection.
Conclusion
Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.
|
论文编号: |
DOI:10.1186/s13059-023-03044-2 |
论文题目: |
A High-Resolution Genotype–Phenotype Map Identifies the TaSPL17 Controlling Grain Number and Size in Wheat |
英文论文题目: |
A High-Resolution Genotype–Phenotype Map Identifies the TaSPL17 Controlling Grain Number and Size in Wheat |
第一作者: |
Yangyang Liu, Jun Chen, Changbin Yin, Ziying Wang, He Wu, Kuocheng Shen, Zhiliang Zhang, Lipeng Kang, Song Xu, Aoyue Bi, Xuebo Zhao, Daxing Xu, Zhonghu He, Xueyong Zhang, Chenyang Hao, Jianhui Wu, Yan Gong, Xuchang Yu, Zhiwen Sun, Botao Ye, Danni Liu, Lili Zhang, Liping Shen, Yuanfeng Hao, Youzhi Ma, Fei Lu & Zifeng Guo |
英文第一作者: |
Yangyang Liu, Jun Chen, Changbin Yin, Ziying Wang, He Wu, Kuocheng Shen, Zhiliang Zhang, Lipeng Kang, Song Xu, Aoyue Bi, Xuebo Zhao, Daxing Xu, Zhonghu He, Xueyong Zhang, Chenyang Hao, Jianhui Wu, Yan Gong, Xuchang Yu, Zhiwen Sun, Botao Ye, Danni Liu, Lili Zhang, Liping Shen, Yuanfeng Hao, Youzhi Ma, Fei Lu & Zifeng Guo |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2023-09-04 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Background
Large-scale genotype–phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments.
Results
We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection.
Conclusion
Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.
|
英文摘要: |
Background
Large-scale genotype–phenotype association studies of crop germplasm are important for identifying alleles associated with favorable traits. The limited number of single-nucleotide polymorphisms (SNPs) in most wheat genome-wide association studies (GWASs) restricts their power to detect marker-trait associations. Additionally, only a few genes regulating grain number per spikelet have been reported due to sensitivity of this trait to variable environments.
Results
We perform a large-scale GWAS using approximately 40 million filtered SNPs for 27 spike morphology traits. We detect 132,086 significant marker-trait associations and the associated SNP markers are located within 590 associated peaks. We detect additional and stronger peaks by dividing spike morphology into sub-traits relative to GWAS results of spike morphology traits. We propose that the genetic dissection of spike morphology is a powerful strategy to detect signals for grain yield traits in wheat. The GWAS results reveal that TaSPL17 positively controls grain size and number by regulating spikelet and floret meristem development, which in turn leads to enhanced grain yield per plant. The haplotypes at TaSPL17 indicate geographical differentiation, domestication effects, and breeding selection.
Conclusion
Our study provides valuable resources for genetic improvement of spike morphology and a fast-forward genetic solution for candidate gene detection and cloning in wheat.
|
刊物名称: |
Genome Biology |
英文刊物名称: |
Genome Biology |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|