|
OPIA: An Open Archive of Plant Images and Related Phenotypic Traits
Yongrong Cao, Dongmei Tian, Zhixin Tang, Xiaonan Liu, Weijuan Hu, Zhang Zhang and Shuhui Song
Nucleic Acids Research
Abstract
High-throughput plant phenotype acquisition technologies have been extensively utilized in plant phenomics studies, leading to vast quantities of images and image-based phenotypic traits (i-traits) that are critically essential for accelerating germplasm screening, plant diseases identification and biotic & abiotic stress classifcation. Here, we present the Open Plant Image Archive (OPIA, https://ngdc.cncb.ac.cn/opia/), an open archive of plant images and i-traits derived from high-throughput phenotyping platforms. Currently, OPIA houses 56 datasets across 11 plants, comprising a total of 566 225 images with 2 417 186 labeled instances. Notably, it incorporates 56 i-traits of 93 rice and 105 wheat cultivars based on 18 644 individual RGB images, and these i-traits are further annotated based on the Plant Phenotype and Trait Ontology (PPTO) and cross-linked with GWAS Atlas. Additionally, each dataset in OPIA is assigned an evaluation score that takes account of image data volume, image resolution, and the number of labeled instances. More importantly, OPIA is equipped with useful tools for online image pre-processing and intelligent prediction. Collectively, OPIA provides open access to valuable datasets, pre-trained models, and phenotypic traits across diverse plants and thus bears great potential to play a crucial role in facilitating artifcial intelligence-assisted breeding research.
|
论文编号: |
DOI:10.1093/nar/gkad975 |
论文题目: |
OPIA: An Open Archive of Plant Images and Related Phenotypic Traits |
英文论文题目: |
OPIA: An Open Archive of Plant Images and Related Phenotypic Traits |
第一作者: |
Yongrong Cao, Dongmei Tian, Zhixin Tang, Xiaonan Liu, Weijuan Hu, Zhang Zhang and Shuhui Song |
英文第一作者: |
Yongrong Cao, Dongmei Tian, Zhixin Tang, Xiaonan Liu, Weijuan Hu, Zhang Zhang and Shuhui Song |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2023-11-06 |
卷: |
|
期: |
|
页码: |
|
摘要: |
High-throughput plant phenotype acquisition technologies have been extensively utilized in plant phenomics studies, leading to vast quantities of images and image-based phenotypic traits (i-traits) that are critically essential for accelerating germplasm screening, plant diseases identification and biotic & abiotic stress classifcation. Here, we present the Open Plant Image Archive (OPIA, https://ngdc.cncb.ac.cn/opia/), an open archive of plant images and i-traits derived from high-throughput phenotyping platforms. Currently, OPIA houses 56 datasets across 11 plants, comprising a total of 566 225 images with 2 417 186 labeled instances. Notably, it incorporates 56 i-traits of 93 rice and 105 wheat cultivars based on 18 644 individual RGB images, and these i-traits are further annotated based on the Plant Phenotype and Trait Ontology (PPTO) and cross-linked with GWAS Atlas. Additionally, each dataset in OPIA is assigned an evaluation score that takes account of image data volume, image resolution, and the number of labeled instances. More importantly, OPIA is equipped with useful tools for online image pre-processing and intelligent prediction. Collectively, OPIA provides open access to valuable datasets, pre-trained models, and phenotypic traits across diverse plants and thus bears great potential to play a crucial role in facilitating artifcial intelligence-assisted breeding research. |
英文摘要: |
High-throughput plant phenotype acquisition technologies have been extensively utilized in plant phenomics studies, leading to vast quantities of images and image-based phenotypic traits (i-traits) that are critically essential for accelerating germplasm screening, plant diseases identification and biotic & abiotic stress classifcation. Here, we present the Open Plant Image Archive (OPIA, https://ngdc.cncb.ac.cn/opia/), an open archive of plant images and i-traits derived from high-throughput phenotyping platforms. Currently, OPIA houses 56 datasets across 11 plants, comprising a total of 566 225 images with 2 417 186 labeled instances. Notably, it incorporates 56 i-traits of 93 rice and 105 wheat cultivars based on 18 644 individual RGB images, and these i-traits are further annotated based on the Plant Phenotype and Trait Ontology (PPTO) and cross-linked with GWAS Atlas. Additionally, each dataset in OPIA is assigned an evaluation score that takes account of image data volume, image resolution, and the number of labeled instances. More importantly, OPIA is equipped with useful tools for online image pre-processing and intelligent prediction. Collectively, OPIA provides open access to valuable datasets, pre-trained models, and phenotypic traits across diverse plants and thus bears great potential to play a crucial role in facilitating artifcial intelligence-assisted breeding research. |
刊物名称: |
Nucleic Acids Research |
英文刊物名称: |
Nucleic Acids Research |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|