|
Phase Separation of S-RNase Promotes Self-Incompatibility in Petunia hybrida.
Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang, Yongbiao Xue
Journal of Integrative Plant Biology
Abstract
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the SCFSLF-mediated ubiquitin-proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h (Trxh) together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin binding proteins, including the actin polymerization factor PhABRACL, whose actin polymerization activity is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for the pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action.
|
论文编号: |
DOI:10.1111/jipb.13584 |
论文题目: |
Phase Separation of S-RNase Promotes Self-Incompatibility in Petunia hybrida. |
英文论文题目: |
Phase Separation of S-RNase Promotes Self-Incompatibility in Petunia hybrida. |
第一作者: |
Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang, Yongbiao Xue |
英文第一作者: |
Huayang Tian, Hongkui Zhang, Huaqiu Huang, Yu'e Zhang, Yongbiao Xue |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2023-11-21 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the SCFSLF-mediated ubiquitin-proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h (Trxh) together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin binding proteins, including the actin polymerization factor PhABRACL, whose actin polymerization activity is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for the pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action. |
英文摘要: |
Self-incompatibility (SI) is an intraspecific reproductive barrier widely present in angiosperms. The SI system with the broadest occurrence in angiosperms is based on an S-RNase linked to a cluster of multiple S-locus F-box (SLF) genes found in the Solanaceae, Plantaginaceae, Rosaceae, and Rutaceae. Recent studies reveal that non-self S-RNase is degraded by the SCFSLF-mediated ubiquitin-proteasome system in a collaborative manner in Petunia, but how self-RNase functions largely remains mysterious. Here, we show that S-RNases form S-RNase condensates (SRCs) in the self-pollen tube cytoplasm through phase separation and the disruption of SRC formation breaks SI in self-incompatible Petunia hybrida. We further find that the pistil SI factors of a small asparagine-rich protein HT-B and thioredoxin h (Trxh) together with a reduced state of the pollen tube all promote the expansion of SRCs, which then sequester several actin binding proteins, including the actin polymerization factor PhABRACL, whose actin polymerization activity is reduced by S-RNase in vitro. Meanwhile, we find that S-RNase variants lacking condensation ability fail to recruit PhABRACL and are unable to induce actin foci formation required for the pollen tube growth inhibition. Taken together, our results demonstrate that phase separation of S-RNase promotes SI response in P. hybrida, revealing a new mode of S-RNase action. |
刊物名称: |
Journal of Integrative Plant Biology |
英文刊物名称: |
Journal of Integrative Plant Biology |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|