|
Non-Transcriptional Regulatory Activity of SMAX1 and SMXL2 Mediates Karrikin-Regulated Seedling Response to Red Light in Arabidopsis.
Wenwen Chang, Qiao Qiao, Qingtian Li, Xin Li, Yanyan Li, Xiahe Huang, Yingchun Wang, Jiayang Li, Bing Wang, and Lei Wang.
Molecular Plant
Abstract
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs, mediate karrikin and strigolactone signaling through direct binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetected or weak transcriptional repression activities, but can still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of smax1 smxl2 mutant. SMAX1 and SMXL2 directly interacted with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 and enhanced the protein stability of PIF4 and PIF5 by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were further identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1 that is independent of the EAR motif had a global effect on gene expression. Taken together, these results reveal that the non-transcriptional regulatory activities of SMAX1 and SMXL2 mediates the karrikin-regulated seedling response to red light.
|
论文编号: |
DOI:10.1016/j.molp.2024.05.007 |
论文题目: |
Non-Transcriptional Regulatory Activity of SMAX1 and SMXL2 Mediates Karrikin-Regulated Seedling Response to Red Light in Arabidopsis. |
英文论文题目: |
Non-Transcriptional Regulatory Activity of SMAX1 and SMXL2 Mediates Karrikin-Regulated Seedling Response to Red Light in Arabidopsis. |
第一作者: |
Wenwen Chang, Qiao Qiao, Qingtian Li, Xin Li, Yanyan Li, Xiahe Huang, Yingchun Wang, Jiayang Li, Bing Wang, and Lei Wang. |
英文第一作者: |
Wenwen Chang, Qiao Qiao, Qingtian Li, Xin Li, Yanyan Li, Xiahe Huang, Yingchun Wang, Jiayang Li, Bing Wang, and Lei Wang. |
联系作者: |
|
英文联系作者: |
|
外单位作者单位: |
|
英文外单位作者单位: |
|
发表年度: |
2024-05-31 |
卷: |
|
期: |
|
页码: |
|
摘要: |
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs, mediate karrikin and strigolactone signaling through direct binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetected or weak transcriptional repression activities, but can still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of smax1 smxl2 mutant. SMAX1 and SMXL2 directly interacted with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 and enhanced the protein stability of PIF4 and PIF5 by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were further identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1 that is independent of the EAR motif had a global effect on gene expression. Taken together, these results reveal that the non-transcriptional regulatory activities of SMAX1 and SMXL2 mediates the karrikin-regulated seedling response to red light. |
英文摘要: |
Karrikins and strigolactones govern plant development and environmental responses through closely related signaling pathways. The transcriptional repressor proteins SUPPRESSOR OF MAX2 1 (SMAX1), SMAX1-like2 (SMXL2), and D53-like SMXLs, mediate karrikin and strigolactone signaling through direct binding downstream genes or by inhibiting the activities of transcription factors. In this study, we characterized the non-transcriptional regulatory activities of SMXL proteins in Arabidopsis. We discovered that SMAX1 and SMXL2 with mutations in their ethylene-response factor-associated amphiphilic repression (EAR) motif had undetected or weak transcriptional repression activities, but can still partially rescued the hypocotyl elongation defects and fully reversed the cotyledon epinasty defects of smax1 smxl2 mutant. SMAX1 and SMXL2 directly interacted with PHYTOCHROME INTERACTION FACTOR 4 (PIF4) and PIF5 and enhanced the protein stability of PIF4 and PIF5 by interacting with phytochrome B (phyB) and suppressing the association of phyB with PIF4 and PIF5. The karrikin-responsive genes were further identified by treatment with GR24ent-5DS, a GR24 analog showing karrikin activity. Interestingly, INDOLE-3-ACETIC ACID INDUCIBLE 29 (IAA29) expression was repressed by GR24ent-5DS treatment in a PIF4- and PIF5-dependent and EAR-independent manner, whereas KARRIKIN UPREGULATED F-BOX 1 (KUF1) expression was induced in a PIF4- and PIF5-independent and EAR-dependent manner. Furthermore, the non-transcriptional regulatory activity of SMAX1 that is independent of the EAR motif had a global effect on gene expression. Taken together, these results reveal that the non-transcriptional regulatory activities of SMAX1 and SMXL2 mediates the karrikin-regulated seedling response to red light. |
刊物名称: |
Molecular Plant |
英文刊物名称: |
Molecular Plant |
论文全文: |
|
英文论文全文: |
|
全文链接: |
|
其它备注: |
|
英文其它备注: |
|
学科: |
|
英文学科: |
|
影响因子: |
|
第一作者所在部门: |
|
英文第一作者所在部门: |
|
论文出处: |
|
英文论文出处: |
|
论文类别: |
|
英文论文类别: |
|
参与作者: |
|
英文参与作者: |
|
|