主要论文:
1.Ma, F., Xu, Y., Wang, R., Tong, Y., Zhang, A., Liu, D., & An, D. (2023). Identification of major QTLs for yield-related traits with improved genetic map in wheat. Frontiers in Plant Science, 14, 1138696.
2.Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y., & Lu, Z. (2023). Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Science China-Life Sciences, 66(4), 819–834.
3.Zhang, Y., Li, Z., Liu, J., Zhang, Y., Ye, L., Peng, Y., Wang, H., Diao, H., Ma, Y., Wang, M., Xie, Y., Tang, T., Zhuang, Y., Teng, W., Tong, Y., Zhang, W., Lang, Z., Xue, Y., & Zhang, Y. (2022). Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nature Communications, 13(1), 6940.
4.Teng, W., He, X., & Tong, Y. (2022). Genetic control of efficient nitrogen use for high yield and grain protein concentration in wheat: A Review. Plants (Basel, Switzerland), 11(4), 492.
5.Zhao, F., Tian, S., Wu, Q., Li, Z., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Zou, S., Teng, W., Tong, Y., Tang, D., Mahato, A. K., Benhamed, M., Liu, Z., & Zhang, Y. (2022). Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. Plant Communications, 3(4), 100304.
6.Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., Lu, F., Jiao, Y., Yang, W., Lin, X., Sun, S., Lu, Z., Gao, L., Zhao, G., Cao, S., Chen, Q., … Chong, K. (2022). Wheat genomic study for genetic improvement of traits in China. Science China-Life Sciences, 65(9), 1718–1775.
7.Zhang, Y., Li, Z., Zhang, Y., Lin, K., Peng, Y., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Guo, J., Teng, W., Tong, Y., Zhang, W., Xue, Y., Lang, Z., & Zhang, Y. (2021). Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Research, 31(12), 2276–2289.
8.Shi, J., & Tong, Y. (2021). TaLAMP1 plays key roles in plant architecture and yield response to nitrogen fertilizer in wheat. Frontiers in Plant Science, 11, 598015.
9.Wang, M., Li, Z., Zhang, Y., Zhang, Y., Xie, Y., Ye, L., Zhuang, Y., Lin, K., Zhao, F., Guo, J., Teng, W., Zhang, W., Tong, Y., Xue, Y., & Zhang, Y. (2021). An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. The Plant Cell, 33(4), 865–881.
10.Li, W., He, X., Chen, Y., Jing, Y., Shen, C., Yang, J., Teng, W., Zhao, X., Hu, W., Hu, M., Li, H., Miller, A. J., & Tong, Y. (2020). A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. The New Phytologist, 225(4), 1667–1680.
11.Fang, J., Zhu, W., & Tong, Y. (2020). Knock-down the expression of brassinosteroid receptor TaBRI1 reduces photosynthesis, tolerance to high light and high temperature stresses and grain yield in wheat. Plants (Basel, Switzerland), 9(7), 840.
12.Li, Z., Wang, M., Lin, K., Xie, Y., Guo, J., Ye, L., Zhuang, Y., Teng, W., Ran, X., Tong, Y., Xue, Y., Zhang, W., & Zhang, Y. (2019). The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biology, 20(1), 139.
13.Fan, X., Cui, F., Ji, J., Zhang, W., Zhao, X., Liu, J., Meng, D., Tong, Y., Wang, T., & Li, J. (2019). Dissection of pleiotropic qtl regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional qtl mapping. Frontiers in Plant Science, 10, 187.
14.Li, L., Xu, Y., Ren, Y., Guo, Z., Li, J., Tong, Y., Lin, T., & Cui, D. (2019). Comparative proteomic analysis provides insights into the regulatory mechanisms of wheat primary root growth. Scientific Reports, 9(1), 11741.
15.Fan, X., Zhang, W., Zhang, N., Chen, M., Zheng, S., Zhao, C., Han, J., Liu, J., Zhang, X., Song, L., Ji, J., Liu, X., Ling, H., Tong, Y., Cui, F., Wang, T., & Li, J. (2018). Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 131(12), 2677–2698.
16.Hu, M., Zhao, X., Liu, Q., Hong, X., Zhang, W., Zhang, Y., Sun, L., Li, H., & Tong, Y. (2018). Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal, 16(11), 1858–1867.
17.Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N. P., & Fu, X. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 560(7720), 595–600.
18.Qi, M., Li, Z., Liu, C., Hu, W., Ye, L., Xie, Y., Zhuang, Y., Zhao, F., Teng, W., Zheng, Q., Fan, Z., Xu, L., Lang, Z., Tong, Y., & Zhang, Y. (2018). CGT-seq: epigenome-guided de novo assembly of the core genome for divergent populations with large genome. Nucleic Acids Research, 46(18), e107.
19.Ren, Y., Qian, Y., Xu, Y., Zou, C., Liu, D., Zhao, X., Zhang, A., & Tong, Y. (2017). Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Frontiers in Plant Science, 8, 2096.
20.Sahito, Z. A., Wang, L., Sun, Z., Yan, Q., Zhang, X., Jiang, Q., Ullah, I., Tong, Y., & Li, X. (2017). The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology, 17(1), 229.
21.Shao, A., Ma, W., Zhao, X., Hu, M., He, X., Teng, W., Li, H., & Tong, Y. (2017). The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiology, 174(4), 2274–2288.
22.Su, Q., Zhang, X., Zhang, W., Zhang, N., Song, L., Liu, L., Xue, X., Liu, G., Liu, J., Meng, D., Zhi, L., Ji, J., Zhao, X., Yang, C., Tong, Y., Liu, Z., & Li, J. (2018). QTL Detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-Bbased lLinkage mMap. Frontiers in Plant Science, 9, 1484.
23.Sun, Z., Su, C., Yun, J., Jiang, Q., Wang, L., Wang, Y., Cao, D., Zhao, F., Zhao, Q., Zhang, M., Zhou, B., Zhang, L., Kong, F., Liu, B., Tong, Y., & Li, X. (2019). Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnology Journal, 17(1), 50–62.
24.Xu, Y., Ren, Y., Li, J., Li, L., Chen, S., Wang, Z., Xin, Z., Chen, F., Lin, T., Cui, D., & Tong, Y. (2019). Comparative proteomic analysis provides new insights into low nitrogen-promoted primary root growth in hexaploid wheat. Frontiers in Plant Science, 10, 151.
25.Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., & Tong, Y. (2019). Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal, 17(9), 1823–1833.
26.Deng, Y., Teng, W., Tong, Y. P., Chen, X. P., & Zou, C. Q. (2018). Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field. Frontiers in Plant Science, 9, 1614.
27.Cui, F., Zhang, N., Fan, X. L., Zhang, W., Zhao, C. H., Yang, L. J., Pan, R. Q., Chen, M., Han, J., Zhao, X. Q., Ji, J., Tong, Y. P., Zhang, H. X., Jia, J. Z., Zhao, G. Y., & Li, J. M. (2017). Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 7(1), 3788.
28.Zhang, N., Fan, X., Cui, F., Zhao, C., Zhang, W., Zhao, X., Yang, L., Pan, R., Chen, M., Han, J., Ji, J., Liu, D., Zhao, Z., Tong, Y., Zhang, A., Wang, T., & Li, J. (2017). Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 130(6), 1235–1252.
29.Zhang, W., Fan, X., Gao, Y., Liu, L., Sun, L., Su, Q., Han, J., Zhang, N., Cui, F., Ji, J., Tong, Y., & Li, J. (2017). Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Scientific Reports, 7, 44677.
30.Wang, Y., Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X., & Jiao, Y. (2017). Transcriptome association identifies regulators of wheat spike architecture. Plant Physiology, 175(2), 746–757.
31.Teng, W., Zhao, Y. Y., Zhao, X. Q., He, X., Ma, W. Y., Deng, Y., Chen, X. P., & Tong, Y. P. (2017). Genome-wide identification, characterization, and expression analysis of pht1 phosphate transporters in wheat. Frontiers in Plant Science, 8, 543.
主要论文:
1.Ma, F., Xu, Y., Wang, R., Tong, Y., Zhang, A., Liu, D., & An, D. (2023). Identification of major QTLs for yield-related traits with improved genetic map in wheat. Frontiers in Plant Science, 14, 1138696.
2.Pei, H., Teng, W., Gao, L., Gao, H., Ren, X., Liu, Y., Jia, J., Tong, Y., Wang, Y., & Lu, Z. (2023). Low-affinity SPL binding sites contribute to subgenome expression divergence in allohexaploid wheat. Science China-Life Sciences, 66(4), 819–834.
3.Zhang, Y., Li, Z., Liu, J., Zhang, Y., Ye, L., Peng, Y., Wang, H., Diao, H., Ma, Y., Wang, M., Xie, Y., Tang, T., Zhuang, Y., Teng, W., Tong, Y., Zhang, W., Lang, Z., Xue, Y., & Zhang, Y. (2022). Transposable elements orchestrate subgenome-convergent and -divergent transcription in common wheat. Nature Communications, 13(1), 6940.
4.Teng, W., He, X., & Tong, Y. (2022). Genetic control of efficient nitrogen use for high yield and grain protein concentration in wheat: A Review. Plants (Basel, Switzerland), 11(4), 492.
5.Zhao, F., Tian, S., Wu, Q., Li, Z., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Zou, S., Teng, W., Tong, Y., Tang, D., Mahato, A. K., Benhamed, M., Liu, Z., & Zhang, Y. (2022). Utility of Triti-Map for bulk-segregated mapping of causal genes and regulatory elements in Triticeae. Plant Communications, 3(4), 100304.
6.Xiao, J., Liu, B., Yao, Y., Guo, Z., Jia, H., Kong, L., Zhang, A., Ma, W., Ni, Z., Xu, S., Lu, F., Jiao, Y., Yang, W., Lin, X., Sun, S., Lu, Z., Gao, L., Zhao, G., Cao, S., Chen, Q., … Chong, K. (2022). Wheat genomic study for genetic improvement of traits in China. Science China-Life Sciences, 65(9), 1718–1775.
7.Zhang, Y., Li, Z., Zhang, Y., Lin, K., Peng, Y., Ye, L., Zhuang, Y., Wang, M., Xie, Y., Guo, J., Teng, W., Tong, Y., Zhang, W., Xue, Y., Lang, Z., & Zhang, Y. (2021). Evolutionary rewiring of the wheat transcriptional regulatory network by lineage-specific transposable elements. Genome Research, 31(12), 2276–2289.
8.Shi, J., & Tong, Y. (2021). TaLAMP1 plays key roles in plant architecture and yield response to nitrogen fertilizer in wheat. Frontiers in Plant Science, 11, 598015.
9.Wang, M., Li, Z., Zhang, Y., Zhang, Y., Xie, Y., Ye, L., Zhuang, Y., Lin, K., Zhao, F., Guo, J., Teng, W., Zhang, W., Tong, Y., Xue, Y., & Zhang, Y. (2021). An atlas of wheat epigenetic regulatory elements reveals subgenome divergence in the regulation of development and stress responses. The Plant Cell, 33(4), 865–881.
10.Li, W., He, X., Chen, Y., Jing, Y., Shen, C., Yang, J., Teng, W., Zhao, X., Hu, W., Hu, M., Li, H., Miller, A. J., & Tong, Y. (2020). A wheat transcription factor positively sets seed vigour by regulating the grain nitrate signal. The New Phytologist, 225(4), 1667–1680.
11.Fang, J., Zhu, W., & Tong, Y. (2020). Knock-down the expression of brassinosteroid receptor TaBRI1 reduces photosynthesis, tolerance to high light and high temperature stresses and grain yield in wheat. Plants (Basel, Switzerland), 9(7), 840.
12.Li, Z., Wang, M., Lin, K., Xie, Y., Guo, J., Ye, L., Zhuang, Y., Teng, W., Ran, X., Tong, Y., Xue, Y., Zhang, W., & Zhang, Y. (2019). The bread wheat epigenomic map reveals distinct chromatin architectural and evolutionary features of functional genetic elements. Genome Biology, 20(1), 139.
13.Fan, X., Cui, F., Ji, J., Zhang, W., Zhao, X., Liu, J., Meng, D., Tong, Y., Wang, T., & Li, J. (2019). Dissection of pleiotropic qtl regions controlling wheat spike characteristics under different nitrogen treatments using traditional and conditional qtl mapping. Frontiers in Plant Science, 10, 187.
14.Li, L., Xu, Y., Ren, Y., Guo, Z., Li, J., Tong, Y., Lin, T., & Cui, D. (2019). Comparative proteomic analysis provides insights into the regulatory mechanisms of wheat primary root growth. Scientific Reports, 9(1), 11741.
15.Fan, X., Zhang, W., Zhang, N., Chen, M., Zheng, S., Zhao, C., Han, J., Liu, J., Zhang, X., Song, L., Ji, J., Liu, X., Ling, H., Tong, Y., Cui, F., Wang, T., & Li, J. (2018). Identification of QTL regions for seedling root traits and their effect on nitrogen use efficiency in wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 131(12), 2677–2698.
16.Hu, M., Zhao, X., Liu, Q., Hong, X., Zhang, W., Zhang, Y., Sun, L., Li, H., & Tong, Y. (2018). Transgenic expression of plastidic glutamine synthetase increases nitrogen uptake and yield in wheat. Plant Biotechnology Journal, 16(11), 1858–1867.
17.Li, S., Tian, Y., Wu, K., Ye, Y., Yu, J., Zhang, J., Liu, Q., Hu, M., Li, H., Tong, Y., Harberd, N. P., & Fu, X. (2018). Modulating plant growth-metabolism coordination for sustainable agriculture. Nature, 560(7720), 595–600.
18.Qi, M., Li, Z., Liu, C., Hu, W., Ye, L., Xie, Y., Zhuang, Y., Zhao, F., Teng, W., Zheng, Q., Fan, Z., Xu, L., Lang, Z., Tong, Y., & Zhang, Y. (2018). CGT-seq: epigenome-guided de novo assembly of the core genome for divergent populations with large genome. Nucleic Acids Research, 46(18), e107.
19.Ren, Y., Qian, Y., Xu, Y., Zou, C., Liu, D., Zhao, X., Zhang, A., & Tong, Y. (2017). Characterization of QTLs for root traits of wheat grown under different nitrogen and phosphorus supply levels. Frontiers in Plant Science, 8, 2096.
20.Sahito, Z. A., Wang, L., Sun, Z., Yan, Q., Zhang, X., Jiang, Q., Ullah, I., Tong, Y., & Li, X. (2017). The miR172c-NNC1 module modulates root plastic development in response to salt in soybean. BMC Plant Biology, 17(1), 229.
21.Shao, A., Ma, W., Zhao, X., Hu, M., He, X., Teng, W., Li, H., & Tong, Y. (2017). The auxin biosynthetic TRYPTOPHAN AMINOTRANSFERASE RELATED TaTAR2.1-3A increases grain yield of wheat. Plant Physiology, 174(4), 2274–2288.
22.Su, Q., Zhang, X., Zhang, W., Zhang, N., Song, L., Liu, L., Xue, X., Liu, G., Liu, J., Meng, D., Zhi, L., Ji, J., Zhao, X., Yang, C., Tong, Y., Liu, Z., & Li, J. (2018). QTL Detection for kernel size and weight in bread wheat (Triticum aestivum L.) using a high-density SNP and SSR-Bbased lLinkage mMap. Frontiers in Plant Science, 9, 1484.
23.Sun, Z., Su, C., Yun, J., Jiang, Q., Wang, L., Wang, Y., Cao, D., Zhao, F., Zhao, Q., Zhang, M., Zhou, B., Zhang, L., Kong, F., Liu, B., Tong, Y., & Li, X. (2019). Genetic improvement of the shoot architecture and yield in soya bean plants via the manipulation of GmmiR156b. Plant Biotechnology Journal, 17(1), 50–62.
24.Xu, Y., Ren, Y., Li, J., Li, L., Chen, S., Wang, Z., Xin, Z., Chen, F., Lin, T., Cui, D., & Tong, Y. (2019). Comparative proteomic analysis provides new insights into low nitrogen-promoted primary root growth in hexaploid wheat. Frontiers in Plant Science, 10, 151.
25.Yang, J., Wang, M., Li, W., He, X., Teng, W., Ma, W., Zhao, X., Hu, M., Li, H., Zhang, Y., & Tong, Y. (2019). Reducing expression of a nitrate-responsive bZIP transcription factor increases grain yield and N use in wheat. Plant Biotechnology Journal, 17(9), 1823–1833.
26.Deng, Y., Teng, W., Tong, Y. P., Chen, X. P., & Zou, C. Q. (2018). Phosphorus efficiency mechanisms of two wheat cultivars as affected by a range of phosphorus levels in the field. Frontiers in Plant Science, 9, 1614.
27.Cui, F., Zhang, N., Fan, X. L., Zhang, W., Zhao, C. H., Yang, L. J., Pan, R. Q., Chen, M., Han, J., Zhao, X. Q., Ji, J., Tong, Y. P., Zhang, H. X., Jia, J. Z., Zhao, G. Y., & Li, J. M. (2017). Utilization of a Wheat660K SNP array-derived high-density genetic map for high-resolution mapping of a major QTL for kernel number. Scientific Reports, 7(1), 3788.
28.Zhang, N., Fan, X., Cui, F., Zhao, C., Zhang, W., Zhao, X., Yang, L., Pan, R., Chen, M., Han, J., Ji, J., Liu, D., Zhao, Z., Tong, Y., Zhang, A., Wang, T., & Li, J. (2017). Characterization of the temporal and spatial expression of wheat (Triticum aestivum L.) plant height at the QTL level and their influence on yield-related traits. Theoretical and Applied Genetics, 130(6), 1235–1252.
29.Zhang, W., Fan, X., Gao, Y., Liu, L., Sun, L., Su, Q., Han, J., Zhang, N., Cui, F., Ji, J., Tong, Y., & Li, J. (2017). Chromatin modification contributes to the expression divergence of three TaGS2 homoeologs in hexaploid wheat. Scientific Reports, 7, 44677.
30.Wang, Y., Yu, H., Tian, C., Sajjad, M., Gao, C., Tong, Y., Wang, X., & Jiao, Y. (2017). Transcriptome association identifies regulators of wheat spike architecture. Plant Physiology, 175(2), 746–757.
31.Teng, W., Zhao, Y. Y., Zhao, X. Q., He, X., Ma, W. Y., Deng, Y., Chen, X. P., & Tong, Y. P. (2017). Genome-wide identification, characterization, and expression analysis of pht1 phosphate transporters in wheat. Frontiers in Plant Science, 8, 543.