姓  名: 傅向东
    职  称: 研究员
    职  务: 副所长(主持工作)
    电话/传真: 86-10-64806558
    电子邮件: xdfu@genetics.ac.cn
    实验室主页:
    研究方向: 植物发育和环境适应的激素调控机理

    简历介绍:

    傅向东,博士,研究员,博士生导师
    学习经历
        1987-1991,武汉大学生物系,学士
        1991-1994,中国科学院武汉植物所,硕士
        1998-2001,英国John Innes Centre和浙江大学联合培养,博士
    工作经历
        1994-1996,浙江农业大学生物技术研究所,助理研究员
        1996-1997,英国John Innes Centre,访问学者
        1997-1998,浙江大学生物技术研究所,讲师
        2001-2005,英国John Innes Centre,博士后
        2005-至今,中国科学院遗传与发育生物学研究所,研究员
        2015-至今,中国科学院大学,教授
        2017-至今,植物细胞与染色体工程国家重点实验室,主任
    荣誉奖励
        2005年,国家自然科学基金委“杰出青年基金”
        2009年,国务院“享受政府特殊津贴专家”
        2010年,第十一届中国青年科技奖
        2011年,中国科学院优秀研究生指导教师奖
        2012年,中国科学院“朱李月华优秀教师”奖
        2013年,第八届大北农科技奖(一等奖)
        2014年,全国优秀科技工作者
        2014年,科技部创新人才推进计划中青年科技创新领军人才
        2016年,国家“万人计划”领军人才科技创新领军人才
        2017年,第十届“谈家桢生命科学创新奖”
        2018年,中国科学十大进展
        2019年,中国农业科学十大进展
        2020年,中国科学院优秀导师奖
        2020年,第八届中国侨界贡献奖(一等奖)
        2020年,国家自然科学奖二等奖(第一完成人)
        2020年,中国生命科学十大进展
        2021年,中国农业科学十大进展
        2021年,中国科学院大学“领雁银奖·振翅奖”
        2022年,中国科学院杰出科技成就奖(突出贡献者)
        2022年,新基石研究员
        2023年,中国科学院优秀共产党员
        2023年,神农领军英才
        2023年,北京学者
        2023年,全国创新争先奖状

    研究领域:

    研究方向

        1. 植物激素与环境互作调控植物生长与代谢协同作用机制       
        植物的生长发育受内源激素(如赤霉素、生长素等)和可变环境(如光、土壤营养和水分等)的共同影响。1)系统阐明DELLA蛋白是赤霉素与其他植物激素、光和氮营养等互作调控植物适应环境变化复杂网络的关键节点。进一步发现赤霉素信号途径新核心元件NGR5,揭示了NGR5-DELLA互作响应赤霉素信号和土壤氮水平共同调控水稻分蘖和产量的表观遗传新机制;2)建立了将生长发育、光合作用和氮代谢作为统一整体来研究作物高产高效协同的理论与技术体系。发现DEP1、GRF4、HY5等多个整合并促进光合作用、氮代谢和植物生长的核心调控元件,揭示了植物生长与代谢平衡的调控新机制。

    DELLA-NGR5协同提高水稻产量和氮肥利用效率的表观遗传新机制(Science, 2020)
    入选2020年度中国生命科学十大进展、2021年度中国农业科学十大进展

    DELLA-GRF4分子模块调控植物生长-代谢平衡,实现“绿色革命”品种减肥增效(Nature, 2018)
    入选2018年度中国科学十大进展、2019年度中国农业科学十大进展

        2. 解析作物高产、优质和氮高效协同改良的遗传调控网络并应用于设计育种
        解析水稻高产、优质和氮高效协同改良的遗传调控网络,为打破“优质不高产”、“高产不高效”育种瓶颈提供多模块组装的品种设计新策略。从优异种质资源发掘与创新入手,克隆了多个协同提升稻米品质、产量和氮肥利用效率的关键基因,绘制了高产、优质和氮高效协同改良的OTUB1-SPL14-GW8-GW7-dep1-gs3-MADS1复杂而精细的遗传网络,设计并育成了高产优质高效的“中禾优”系列国审水稻新品种。

    水稻高产、优质、高效新基因挖掘和分子设计育种(Nature Genetics, 2009; 2012; 2014; 2015)

    社会任职:

    获奖及荣誉:

    承担科研项目情况:

    代表论著:

    代表性论文
    1. Liu H, Fu X* (2024) Phytohormonal networks facilitate plant root developmental adaptations to environmental changes. Science Bulletin 69(6):709-713.
    2. Liu Q, Fu X. (2023) Can heterotrimeric G proteins improve sustainable crop production and promote a more sustainable Green Revolution? The Innovation Life, 1(2):100024.
    3. Ji Z, Belfield EJ, Zhang S, Bouvier J, Li S, Schnell J, Fu X, Harberd NP (2023) Evolution of a plant growth-regulatory protein interaction specificity. Nature Plants 9(12):2059-2070.
    4. Li S, Sun Z, Sang Q, Qin C, Kong L, Huang X, Liu H, Su T, Li H, He M, Fang C, Wang L, Liu S, Liu B*, Liu B*, Fu X*, Kong F*, Lu S* (2023) Soybean reduced internode 1 determines internode length and improves grain yield at dense planting. Nature Communications 14(1):7939.
    5. Wu Y, Zhao Y, Yu J, Wu C, Wang Q, Liu X, Gao X, Wu K, Fu X*, Liu Q* (2023) Heterotrimeric G protein g subunit DEP1 synergistically regulates grain quality and yield by modulating the TTP (TON1-TRM-PP2A) complex in rice. Journal of Genetics and Genomics 50:528e531.
    6. Kong X#, Wang F#, Wang Z#, Gao X#, Geng S, Deng Z, Zhang S, Fu M, Cui D, Liu S, Che Y, Liao R, Yin L, Zhou P, Wang K, Ye X, Liu D, Fu X*, Mao L*, Li A* (2023) Grain yield improvement by genome editing of TaARF12 that decoupled peduncle and rachis development trajectories via differential regulation of gibberellin signalling in wheat. Plant Biotechnology Journal 21:1990-2001.
    7. Ren Y#, Liu B#, Jiang H, Cheng W, Tao L, Wu K, Wang H, Shen G, Fang Y, Zhang C, Wu Y*, Fu X*, Ye Y* (2023) Precision editing of GLR1 confers glufosinate resistance without yield penalty in rice. Plant Biotechnology Journal 21(12):2417-2419.
    8. Sun H, Guo X, Zhu X, Gu P, Zhang W, Tao W, Wang D, Wu Y, Zhao Q, Xu G, Fu X*, Zhang Y* (2023) Strigolactone and gibberellin signaling coordinately regulate metabolic adaptations to changes in nitrogen availability in rice. Molecular Plant 16:588-598.
    9. Liu Q, Wu K, Wu Y, Song W, Wang S, Fu X* (2022) Beyond the Green Revolution: Improving crop productivity and sustainability by modulating plant growth-metabolic coordination. Molecular Plant 15:573-576.
    10. Liu Q, Wu K, Song W, Zhong N, Wu Y, Fu X* (2022) Improving Crop Nitrogen Use Efficiency Toward Sustainable Green Revolution. Annual Review of Plant Biology 73:523-551.(Highly cited)
    11. Li A#*, Hao C#, Wang Z#, Geng S, Jia M, Wang F, Han X, Kong X, Yin L, Tao S, Deng Z, Liao R, Sun G, Wang K, Ye X, Jiao C, Lu H, Zhou Y, Liu D, Fu X*, Zhang X* and Mao Long* (2022) Wheat breeding history reveals synergistic selection of pleiotropic genomic sites for plant architecture and grain yield. Molecular Plant 15:504-519. (Highly cited)
    12. Wu K, Xu H, Gao X, Fu X* (2021) New insights into gibberellin signaling in regulating plant growth-metabolic coordination. Current Opinion in Plant Biology 63:102074.
    13. Liu Q, Wu K, Harberd NP, Fu X* (2021) Green Revolution DELLAs: From translational reinitiation to future sustainable agriculture. Molecular Plant 14(4):547-549.
    14. Wu K#, Wang S#, Song W, Zhang J, Wang Y, Liu Q, Yu J, Ye Y, Li S, Chen J, Zhao Y, Wang J, Wu X, Wang M, Zhang Y, Liu B, Wu Y, Harberd NP*, Fu X* (2020) Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science:367 (6478). (Highly cited)
    15. Xu X#, Wu K#, Xu R, Wang S, Gao Z, Zhong Y, Li X, Liao H, Fu X* (2019) Pyramiding of the dep1-1 and NAL1NJ6 alleles achieves sustainable improvements in nitrogen-use efficiency and grain yield in japonica rice breeding. Journal of Genetics and Genomics 46(6):325-328.
    16. Li S, Tian Y, Wu K, Ye Y, Yu J, Zhang J, Liu Q, Hu M, Li H, Tong Y, Harberd NP, Fu X* (2018) Modulating plant growth-metabolism coordination for sustainable agriculture. Nature 520 (7720):595-600. (Highly cited)
    17. Liu Q#, Han R#, Wu K, Zhang J, Ye Y, Wang S, Chen J, Pan Y, Li Q, Xu X, Zhou J, Tao D, Wu Y, Fu X* (2018) G-protein βγ subunits determine grain size through interaction with MADS-domain transcription factors in rice. Nature Communications 9:852.(Highly cited)
    18. Wu K#, Xu X#, Zhong N, Huang H, Yu J, Ye Y, Wu Y, Fu X* (2018) The rational design of multiple molecular module-based assemblies for simultaneously improving rice yield and grain quality. Journal of Genetics and Genomics 45(6):337-341.
    19. Wang S#, Wu K#, Qian Q#, Qian L, Pan Y, Ye Y, Liu X, Wang J, Zhang J, Li S, Wu Y, Fu X* (2017) Non-canonical regulation of SPL transcription factors by a human OTUB1-like deubiquitinase defines a new plant type rice associated with higher grain yield. Cell Research 27(9):1142-1156.
    20. Chen X, Yao Q, Gao X, Jiang C, Harberd NP, Fu X* (2016) Shoot-to-Root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Current Biology 26:640-646. (Highly cited)
    21. Liu Q, Harberd NP, Fu X* (2016) SQUAMOSA Promoter Binding Protein-like Transcription Factors: Targets for Improving Cereal Grain Yield. Molecular Plant 9:765-767.
    22. Liu Q, Chen X, Wu K, Fu X* (2015) Nitrogen signaling and use efficiency in plants: what’s new? Current Opinion in Plant Biology 27:192-198.
    23. Wang S, Li S, Liu Q, Wu K, Zhang J, Wang S, Wang Y, Chen X, Zhang Y, Gao C, Wang F, Huang H, Fu X* (2015) The OsSPL16-GW7 regulatory module determines grain shape and simultaneously improves rice yield and grain quality. Nature Genetics 47(8):949-954. (Highly cited)
    24. Ye Y, Liu B, Zhao M, Wu K, Cheng W, Chen X, Liu Q, Liu Z, Fu X*, Wu Y* (2015) CEF1/OsMYB103L is involved in GA-mediated regulation of secondary wall biosynthesis in rice. Plant Molecular Biology 89(4-5):385-401.
    25. Xu H, Liu Q, Yao T, Fu X* (2014) Shedding light on integrative GA signaling. Current Opinion in Plant Biology 21:89-95.
    26. Sun H#, Qian Q#, Wu K#, Luo J#, Wang S#, Zhang C, Ma Y, Liu Q, Huang X, Yuan Q, Han R, Zhao M, Dong G, Guo L, Zhu X, Gou Z, Wang W, Wu Y, Lin H, Fu X* (2014) Heterotrimeric G proteins regulate nitrogen-use efficiency in rice. Nature Genetics 46:652-656.
    27. Ma W, Li J, Qu B, He X, Zhao X, Li B, Fu X*, Tong Y* (2014) Auxin biosynthetic gene TAR2 is involved in low nitrogen mediated reprogramming of root architecture in Arabidopsis. Plant Journal 78:70-79.
    28. Wang S, Wu K, Yuan Q, Liu X, Liu Z, Lin X, Zeng R, Zhu H, Dong G, Qian Q, Zhang G *, Fu X* (2012) Control of grain size, shape and quality by OsSPL16 in rice. Nature Genetics 44:950-954. (Highly cited)
    29. Gao X, Xiao S, Yao Q, Wang Y, Fu X* (2011) An Updated GA Signaling ’Relief of Repression’ Regulatory Model. Molecular Plant 4:60-606.
    30. Wu J, Kong X, Wan J, Liu X, Zhang X, Guo X, Zhou R, Zhao G, Jing R, Fu X*, Jia J* (2011) Dominant and Pleiotropic Effects of a GAI Gene in Wheat Results from a Lack of Interaction between DELLA and GID1. Plant Physiology 157:2120-2130.
    31. Huang X#, Qian Q#, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X* (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nature Genetics 41:494-497. (Highly cited)
    32. Jiang C, Gao X, Liao L, Harberd NP, Fu X* (2007) Phosphate-starvation root architecture and anthocyanin accumulation responses are modulated by the GA-DELLA signaling pathway in Arabidopsis. Plant Physiology 145:1460-1470.
    33. Jiang C, Fu X* (2007) GA action: turning on de-DELLA repressing signaling. Current Opinion in Plant Biology 10:461-465.