部分发表文章(*通讯或共同通讯作者):
Wang W*, Qin L, Zhang W, Tang L, Zhang C, Dong X, Miao P, Shen M, Du H, Cheng H, Wang K, Zhang X, Su M, Lu H, Li C, Gao Q, Zhang X, Huang Y, Liang C, Zhou JM*, and Chen YH* (2023). WeiTsing, a pericycle-expressed ion channel, safeguards the stele to confer clubroot resistance. Cell 186: 2656-2671.
Dong X*, Feng F, Li Y, Li L, Chen S, and Zhou JM* (2023). 14-3-3 proteins facilitate the activation of MAP kinase cascades by upstream immunity-related kinases. Plant Cell 35: 2413-2428.
Wang W*, Fei Y, Wang Y, Song B, Li L, Zhang W, Cheng H, Zhang X, Chen S, and Zhou JM (2023). SHOU4/4L link cell wall cellulose synthesis to pattern triggered immunity. New Phytologist 238: 1620-1635.
Ma M, Li M, Zhou R, Yu J-B, Wu Y, Zhang X, Wang J, Zhou JM*, and Liang X*(2023). CPR5 positively regulates pattern‐triggered immunity via a mediator protein. J Integr Plant Biol. 00: 1-7.
Bi G*, Hu M, Fu L, Zhang X, Zuo J, Li J, Yang J*, and Zhou JM* (2022). The cytosolic thiol peroxidase PRXIIB is an intracellular sensor for H2O2 that regulates plant immunity through a redox relay. Nature Plants 8: 1160-1175.
Ma M, Wang W, Fei Y, Cheng, HY, Song S, Zhou Z, Zhao Y, Zhang X, Li L, Chen S, Wang J, Liang X*, Zhou JM* (2022). A surface-receptor-coupled G protein regulates plant immunity through nuclear protein kinases. Cell Host Microbe 30: 1602-1614.
Gong Z, Qi J, Hu M, Bi G, Zhou JM*, and Han G* (2022). The origin and evolution of a plant resistosome. Plant Cell 34: 1600-1620.
Zhao Y, Shi Y, Jiang G, Wu Y, Ma M, Zhang X, Liang X*, and Zhou JM* (2022). Rice extra-large G proteins play pivotal roles in controlling disease resistance and yield-related traits. New Phytologist 234: 607-617.
Zheng X, Zhou Z, Gong Z, Hu M, Ahn Y, Zhang X, Zhao Y, Gong G, Zhang J, Zuo J, Han G-Z, Hoon S, and Zhou JM*(2022). Two plant NLR proteins confer strain-specific resistance conditioned by an effector from Pseudomonas syringae pv. actinidiae. J Genet Genomics 49: 823-832.
Zhao Y, Zhu X, Chen X*, and Zhou JM*(2022). From plant immunity to crop disease resistance. J Genet Genomics 49: 693-703.
Bi G and Zhou JM* (2021). Regulation of cell death and signaling by pore-forming resistosomes. Annual Review of Phytopathology 59: 239-263 (invited review).
Bi G, Su M, Li N, Liang Y, Dang S, Xu J, Hu M, Wang J, Zou M, Deng Y, Li Q, Huang S, Li J, Chai J*, He K*, Chen YH*, and Zhou JM* (2021). The ZAR1 resistosome is a calcium-permeable channel triggering plant immune signaling. Cell 184: 3528-2541.
Zhou JM* and Zhang Y* (2020). Plant immunity: danger perception and signaling. Cell 181: 978-989 (invited review).
Wang W, Yang J, Zhang J, Liu YX, Tian C, Qu B, Gao C, Xin P, Cheng S, Zhang W, Miao P, Li L, Zhang X, Chu J, Zuo J, Li J, Bai Y, Lei X*, and Zhou JM* (2020). An Arabidopsis secondary metabolite directly targets expression of the bacterial Type III Secretion System to inhibit bacterial virulence. Cell Host Microbe 27: 601-613.
Hu M, Qi J, Bi G*, and Zhou JM* (2020). Bacterial effectors induce oligomerization of immune receptor ZAR1 in vivo. Molecular Plant 13: 793-801.
Wang J, Wang J, Hu M, Wu S, Qi J, Wang G, Han Z, Qi Y, Gao N, Wang HW*, Zhou JM*, and Chai J* (2019). Ligand-triggered allosteric ADP release primes a plant NLR complex. Science 364: eaav5868.
Wang J, Hu M, Wang J, Qi J, Han Z, Wang G, Qi Y, Wang HW*, Zhou JM*, and Chai J* (2019). Reconstitution and structure of a plant NLR resistosome conferring immunity. Science 364: eaav5870.
Liang X, Ma M, Zhou Z, Wang J, Yang X, Rao S, Bi G, Li L, Zhang X, Chai J, Chen S, and Zhou JM* (2018). Ligand-triggered de-repression of Arabidopsis heterotrimeric G proteins coupled to immune receptor kinases. Cell Research 28: 529-543.
Bi G,
Zhou Z,Wang W, Li L,
Rao S, Zhang X, Menke FLH, She Chen S, and
Zhou JM* (2018). Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of MAPK cascades in Arabidopsis.
Plant Cell 30: 1543-1561.
Liang X and Zhou JM* (2018). Receptor-Like Cytoplasmic Kinases: central players in plant receptor kinase-mediated signaling. Annual Review of Plant Biology 69: 267-299 (invited review).
Wang J, Grubb LE, Wang J, Liang X, Li L, Gao C, Ma M, Feng F, Li M, Li L, Zhang X, Yu F, Xie Q, Chen S, Zipfel C, Monaghan J, and Zhou JM* (2018). A regulatory module controlling homeostasis of a plant immune kinase. Molecular Cell 69: 493-504.
Rao S, Zhou Z*, Miao P, Bi G, Hu M, Wu Y, Feng F, Zhang X, and Zhou JM* (2018). Roles of receptor-like cytoplasmic kinase VII members in Pattern-Triggered Immune signaling. Plant Physiology 177: 1679-1690.
Tang D *, Wang G, and Zhou JM* (2017). Receptor kinases in plant pathogen interactions: more than pattern recognition. Plant Cell 29: 618-637 (invited review).
Li L*, Kim P, Yu L, Cai G, Chen S,
Alfano JR, and
Zhou JM* (2016). Activation-dependent destruction of a co-receptor by a
Pseudomonas syringae effector dampens plant immunity.
Cell Host Microbe 20: 504-514.
Liang X, Ding P, Lian K, Wang J, Ma M, Li L, Li L, Li M, Zhang X, Chen S, Zhang Y*, and Zhou JM* (2016). Arabidopsis heterotrimeric G proteins regulate immunity by directly coupling to the FLS2 receptor. eLife doi: 10.7554/eLife.13568.
Wang G, Roux B, Feng F, Guy E, Li L, Li N, Zhang X, Lautier M, Jardinaud MF, Chabannes M, Arlat M, Chen S, He C, No?l LD*, and Zhou JM* (2015). The Decoy substrate of a pathogen effector and a pseudokinase specify pathogen-induced modified-self recognition and immunity in plants. Cell Host Microbe 18: 285-295.
Zhou Z, Wu Y, Yang Y, Du M, Zhang X, Guo Y, Li C, and Zhou JM* (2015). An Arabidopsis plasma membrane proton ATPase modulates JA signaling and is exploited by the Pseudomonas syringae effector protein AvrB for stomatal invasion. Plant Cell 27: 2032-2041.
Li M, Ma X, Chiang YH, Yadeta KA, Ding P, Dong D, Zhao Y, Li X, Yu Y, Zhang L, Shen QH, Xia B, Coaker G, Liu D*, and Zhou JM* (2014). Proline isomerization of the immune receptor-interacting protein RIN4 by a cyclophilin inhibits effector-triggered immunity. Cell Host Microbe 16: 473-483.
Li L, Li M, Yu L, Zhou Z, Liang X, Liu Z, Cai G, Gao L, Zhang X, Wang Y, Chen S, and Zhou JM* (2014). The FLS2-Associated kinase BIK1 directly phosphorylates the NADPH oxidase RbohD to control plant immunity. Cell Host Microbe 15: 329-338.
Sun Y, Li L, Macho AP, Han Z*, Zipfel C, Zhou JM*, and Chai J* (2013). Structural basis for flg22-induced activation of the Arabidopsis FLS2-BAK1 immune complex. Science 342: 624-628.
Liu Z, Wu Y, Yang F, Zhang Y, Chen S, Xie Q, Tian X*, and Zhou JM* (2013). BIK1 interacts with PEPRs to mediate ethylene-induced immunity. PNAS 110: 6205-6210.
Dou D and Zhou JM* (2012). Phytopathogen effectors subverting host immunity: different foes, similar battleground. Cell Host Microbe 12: 484-495 (invited review).
Liu T, Liu Z, Song C, Hu Y, Han Z, She J, Fan F, Wang J, Jin C, Chang J*, Zhou JM*, and Chai J* (2012). Chitin-induced dimerization activates a plant immune receptor. Science 336: 1160-1164.
Feng F, Yang F, Rong W, Wu X, Zhang J, Chen S, He C*, and Zhou JM* (2012). A Xanthomonas uridine 5’-monophosphate transferase inhibits plant immune kinases. Nature 485: 114-118.
Xiang T, Zong N, Zhang J, Chen J, Chen M, and Zhou JM* (2011). BAK1 is not a target of the Pseudomonas syringae effector AvrPto. MPMI 24: 100-107.
Zhang J, Li W, Xiang T, Liu Z, Laluk K, Ding X, Zou Y , Gao M, Zhang X, Chen S, Mengiste T, Zhang Y, and Zhou JM* (2010). Receptor-like cytoplasmic kinases integrate signaling from multiple plant immune receptors and are targeted by a Pseudomonas syringae effector. Cell Host Microbe 7: 290-301.
Cui H, Wang Y, Xue L, Chu J, Yan C, Fu J, Chen M, Innes R, and Zhou JM* (2010). Pseudomonas syringae effector protein AvrB perturbs Arabidopsis hormone signaling by activating MAP KINASE 4. Cell Host Microbe 7: 164-175.
Wang Y, Li J, Hou S, Wang X, Li Y, Ren D, Chen S, Tang X, and Zhou JM* (2010). A Pseudomonas syringae ADP-Ribosyltransferase inhibits Arabidopsis Mitogen-Activated Protein Kinase Kinases. Plant Cell 22: 2033-2044.
Li Y, Zhang Q, Zhang J, Wu L, Qi Y, and Zhou JM* (2010). Identification of miRNAs involved in Pathogen-Associated Molecular Pattern-triggered plant innate immunity. Plant Physiology 152: 2222-2231.
Zhang J and Zhou JM* (2010). Plant innate immunity triggered by microbial molecular signatures. Molecular Plant 5: 783-793(invited review).
Chen H, Xue L, Chintamanani S, Germain H, Lin H, Cui H, Cai R, Zuo J, Tang X, Li X, Guo H, and Zhou JM* (2009). ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE 3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2 expression to negatively regulate plant innate immunity. Plant Cell 25: 2527-2540.
Cui H, Xiang T, and Zhou JM* (2009). Plant immunity: A lesson from pathogenic bacterial effector proteins. Cellular Microbiology 11: 1453-1461(invited review).
Chen H, Zou Y, Shang Y, Lin H, Wang Y, Cai R, Tang X, and Zhou JM* (2008). Firefly luciferase complementation imaging assay for protein-protein interactions in plants. Plant Physiology 146: 368-376.
Zhou JM* and Chai J* (2008). Plant pathogenic bacterial type III effectors subdue host responses. Current Opinion in Microbiology 11: 179-185 (invited review).
Xiang T, Zong N, Zou Y, Wu Y, Zhang J, Xing W, Li Y, Tang X, Zhu L, Chai J, and Zhou JM* (2008). Pseudomonas syringae effector AvrPto blocks innate immunity by targeting receptor kinases. Current Biology 18: 74-80.
Zhang J, Shao F, Li Y, Cui H, Chen L, Li H, Zou Y, Long C, Lan L, Chai J, Chen S, Tang X, and Zhou JM* (2007). A Pseudomonas syringae Effector Inactivates MAPKs to Suppress PAMP-Induced Immunity. Cell Host Microbe 1: 175-185.
Shang Y, Li X, Cui H, He P, Thilmony R, Chintamanani S, Zwiesler-Vollick J, Gopalan S, Tang X, and Zhou JM* (2006). RAR1, a central player in plant immunity, is targeted by Pseudomonas syringae effector AvrB. PNAS 103: 19200-19205.
Li X, Lin H, Zhang W, Zou Y, Zhang J, Tang X, and Zhou JM* (2005). Flagellin induces innate immunity in nonhost interactions that is suppressed by Pseudomonas syringae effectors. PNAS 102: 12990-12995.
Xiao F, S. Goodwin M, Xiao Y, Sun Z, Baker D, Tang X, Jenks MA, and Zhou JM* (2004). Arabidopsis CYP86A2 represses Pseudomonas syringae type III genes and is required for cuticle development. EMBO J 23: 2903-2913.
He P, Chintamanani S, Chen Z, Zhu L, Kunkel BN, Alfano JR, Tang X, and Zhou JM* (2004). Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant Journal 37: 589-602.
Kang L, Li J, Zhao T, Xiao F, Tang X, Thilmony R, He SY, and Zhou JM* (2003). Interplay of the Arabidopsis nonhost resistance gene NHO1 with bacterial virulence. PNAS 100: 3519-3524.
He P, Friebe B, Gill BS, and Zhou JM* (2003). Allopolyploidy alters gene expression in the highly stable hexaploid wheat. Plant Molecular Biology 52: 401-414.
Thara VK, Fellers JP, and Zhou JM* (2003). In planta induced genes of Puccinia triticina. Molecular Plant Pathology 4: 51-56.
Xiao F, Lu M, Li J, Zhao T, Yi SY, Thara VK, Tang X, and Zhou JM* (2003). Pto mutants differentially activate Prf-dependent, AvrPto-independent resistance and gene-for-gene resistance. Plant Physiology 131: 1239-1249.
Xiao F, Tang X, and Zhou JM* (2001). Expression of 35S::Pto globally activates defense gene expression in tomato plants. Plant Physiology 126: 1637-1645.
Lu M, Tang X, and Zhou JM* (2001). Arabidopsis NHO1 is required for general resistance against Pseudomonas bacteria. Plant Cell 13: 437-447.