姓  名: 韩方普
    职  称: 研究员
    职  务:
    电话/传真: 86-10-64807926
    电子邮件: fphan@genetics.ac.cn
    实验室主页:
    研究方向: 植物染色体生物学

    简历介绍:

    韩方普,博士,研究员,博士生导师

            东北师范大学遗传与细胞研究所获博士学位;1998-2001年在以色列 Weizmann 研究所做博士后,从事小麦多倍体基因组进化研究;2001-2004年在加拿大农业部做Visiting Fellow 和 Biologist,从事小麦抗赤霉病分子标记和种质创新及小麦多倍体基因组进化研究;2004-2008年在美国 University of Missouri-Columbia 从事玉米功能基因组及植物人工染色体研究。韩方普研究组主要从事小麦和玉米功能基因组、小麦染色体工程育种及植物人工染色体研究。

    研究领域:

    主要研究领域

    远缘杂交育种和多倍体基因组进化

             重点研究多倍体作物小麦及小偃麦的形成过程及机制。高效地转移、鉴定和跟踪外缘基因,发掘具有重要育种价值的易位系和关键基因。揭示多倍体作物中基因组之间的互作与优势的分子机理;创制、鉴定和评价小片段易位系和近缘种全基因组渗入系;分离并详细研究来自野生物种的高产、优质、抗病虫和抗逆基因;培育高产稳产、优质高效、抗病和耐逆的作物新品种。

    植物着丝粒的结构和功能

             在玉米着丝粒功能研究领域:研究玉米染色体着丝粒功能“失活-激活”的表观遗传学调控机制。探讨DNA甲基化、组蛋白修饰以及小RNA与着丝粒功能的内在联系。

    植物减数分裂

             减数分裂过程中同源染色体的配对起始、重组、取向和分离的分子机理是国际上研究的热点。将以小麦和玉米的特殊突变体为材料来研究上述问题,分离减数分裂相关基因并阐明其功能。

    植物人工染色体

             将利用不同的方法构建植物人工染色体。构建和优化适合多基因或完整代谢途径遗传转化的转基因载体。

    植物基因定点突变及定向重组

             随着玉米基因组序列的完成,需要发展一种有效的方法来利用已知的序列信息进行定点突变和置换,避免位置效应而进行重要基因功能的鉴定。利用人工锌指蛋白核酸酶技术对小麦和玉米的基因进行定点突变和置换, 将对基因功能研究和分子设计育种提供新的方法。

    社会任职:

    获奖及荣誉:

    承担科研项目情况:

    代表论著:

    发表论文:
    1. Liu, C., Huang, Y., Guo, X., Yi, C., Liu, Q., Zhang, K., Zhu, C., Liu, Y., & Han, F. (2024) Young retrotransposons and non-B DNA structures promote the establishment of dominant rye centromere in the 1RS.1BL fused centromere. New phytol. 241(2): 607–622.
    2. Liu C, Fu S, Yi C, Liu Y, Huang Y, Guo X, Zhang K, Liu Q, Birchler JA & Han F. (2024) Unveiling the Distinctive Traits of Functional Rye Centromeres: Minisatellites, Retrotransposons, and R-Loop Formation. Sci China Life Sci. ttps://doi.org/10.1007/s11427-023-2524-0.
    3. Yi C, Liu Q, Huang Y, Liu C, Guo X, Fan C, Zhang K, Liu Y & Han F. (2024) Non-B-form DNA is associated with centromere stability in newly-formed polyploid wheat. Sci China Life Sci. 10.1007/s11427-023-2513-9.
    4. Liu Y, Yi C, Fan C, Liu Q, Liu S, Shen L, Zhang K, Huang Y, Liu C, Wang Y, Tian Z, & Han F. (2023) Pan-centromere reveals widespread centromere repositioning of soybean genomes. Proc Natl Acad Sci U S A. 120(42), e2310177120.
    5. Liu Q, Yi C, Zhang Z, Su H, Liu C, Huang Y, Li W, Hu X, Liu C, Birchler JA, Liu Y, Han F. (2023) Non-B-form DNA tends to form in centromeric regions and has undergone changes in polyploid oat subgenomes. Proc Natl Acad Sci U S A.120(1): e2211683120.
    6. Zhang J, Fan C, Liu Y, Shi Q, Sun Y, Huang Y, Yuan J & Han F (2023). Cytological analysis of the diploid-like inheritance of newly synthesized allotetraploid wheat. Chromosome Res. 32(1): 1.
    7. Qiu Y, Han Z, Liu N, Yu M, Zhang S, Chen H, Tang H, Zhao Z, Wang K, Lin Z, Han F, & Ye X. (2023) Effects of Aegilops longissima chromosome 1Sl on wheat bread-making quality in two types of translocation lines. Theor. Appl. Genet.137(1): 2.
    8. Guo X, Shi Q, Wang M, Yuan J, Zhang J, Wang J, Liu Y, Su H, Wang Z, Li J, Liu C, Ye X, Han F. (2023) Functional analysis of the glutathione S-transferases from Thinopyrum and its derivatives on wheat Fusarium head blight resistance. Plant Biotechnol J. 21(6): 1091-1093.
    9. Guo X, Shi Q, Liu Y, Su H, Zhang J, Wang M, Wang C, Wang J, Zhang K, Fu S, Hu X, Jing D, Wang Z, Li J, Zhang P, Liu C, Han F. (2023) Systemic development of wheat-Thinopyrum elongatum translocation lines and their deployment in wheat breeding for Fusarium head blight resistance. Plant J. 114(6): 1475-1489.
    10.  Huang Y, Liu Y, Guo X, Fan C, Yi C, Shi Q, Su H, Liu C, Yuan J, Liu D, Yang W, Han F. (2023) New insights on the evolution of nucleolar dominance in newly resynthesized hexaploid wheat Triticum zhukovskyi. Plant J.
    11.  Shi Q, Guo X, Su H, Zhang Y, Hu Z, Zhang J, Han F. (2023) Autoploid origin and rapid diploidization of the tetraploid Thinopyrum elongatum revealed by genome differentiation and chromosome pairing in meiosis. Plant J. 113(3): 536-545.
    12.  Huang Y, Shi Q, Zhou C, Wang C, Liu Y, Yi C, Su H, & Han F (2023). Wide hybridizations reveal the robustness of functional centromeres in Triticum-Aegilops species complex lines. J Genet Genomics. S1673-8527(23)00243-6. 
    13.  Guo X, Huang Y, Wang J, Fu S, Wang C, Wang M, Zhou C, Hu X, Wang T, Yang W, Han F. (2023) Development and cytological characterization of wheat-Thinopyrum intermedium translocation lines with novel stripe rust resistance gene. Front Plant Sci. 14: 1135321.
    14.  Guo X, Wang M, Kang H, Zhou Y, and Han F. (2022) Distribution, Polymorphism and Function Characteristics of the GST-Encoding Fhb7 in Triticeae. Plants (Basel) 11(16): 2074.
    15.  Liu C, Wang J, Fu S, Wang L, Li H, Wang M, Huang Y, Shi Q, Zhou Y, Guo X, Zhu C, Zhang J, and Han F. (2022) Establishment of a set of wheat-rye addition lines with resistance to stem rust. Theor. Appl. Genet. 135(7): 2469-2480.
    16.  Huang Y, Liu Y, Liu C, Birchler JA, and Han F. (2022) Prospects and challenges of epigenomics in crop improvement. Genes Genomics 44(3): 251-257.
    17.  Zhou J, Liu Y, Guo X, Birchler JA, Han F, and Su H. (2022) Centromeres: From chromosome biology to biotechnology applications and synthetic genomes in plants. Plant Biotechnol. J. 20(11): 2051-2063.
    18.  Konkin D, Hsueh YC, Kirzinger M, Kubaláková M, Haldar A, Balcerzak M, Han F, Fedak G, Dole?el J, Sharpe A, and Ouellet T. (2022) Genomic sequencing of Thinopyrum elongatum chromosome arm 7EL, carrying fusarium head blight resistance, and characterization of its impact on the transcriptome of the introgressed line CS-7EL. BMC Genomics. 23(1): 228.
    19.  Su H, Liu Y, Wang C, Liu Y, Feng C, Sun Y, Yuan J, Birchler JA and Han F. (2021) Knl1 participates in spindle assembly checkpoint signaling in maize.Proc Natl Acad Sci U S A. 118(20): e2022357118.
    20.  Blavet N, Yang H, Su H, Solansky P, Douglas RN, Karafiátová M, Simková L, Zhang J, Liu Y, Hou J, Shi X, Chen C, El-Walid M, McCaw ME, Albert PS, Gao Z, Zhao C, Ben-Zvi G, Glick L, Kol G, Shi J, Vrána J, Simková H, Lamb JC, Newton K, Dawe RK, Dolezel J, Ji T, Baruch K, Cheng J, Han F, Birchler JA, Bartos J. (2021) Sequence of the supernumerary B chromosome of maize provides insight into its drive mechanism and evolution.Proc Natl Acad Sci U S A 118(23): e2104254118.
    21.  Liu Y, Wang C, Su H, Birchler JA and Han F. (2021) Phosphorylation of histone H3 by Haspin regulates chromosome alignment and segregation during mitosis in maize.J Exp Bot72(4): 1046-1058.
    22.  Liu Q, Liu Y, Shi Q, Su H, Wang C, Birchler JA and Han F. (2021) Emerging roles of centromeric RNAs in centromere formation and function.Genes Genomics43(3): 217-226. 
    23.  Liu Y, Liu Q, Su H, Liu K, Xiao X, Li W, Sun Q, Birchler JA, Han F. (2021) Genome-wide mapping reveals R-loops associated with centromeric repeats in maize.Genome Res. 31(8): 1409-1418.
    24.  Zhang Y, Fan C, Chen Y, Wang R, Zhang X, Han F and Hu Z. (2021) Genome evolution during bread wheat formation unveiled by the distribution dynamics of SSR sequences on chromosomes using FISH. BMC Genomics 22(1): 55.
    25.   Haldar A, Tekieh F, Balcerzak M, Wolfe D, Lim D, Joustra K, Konkin D, Han F, Fedak G and Ouellet T. (2021) Introgression of Thinopyrum elongatum DNA fragments carrying resistance to fusarium head blight into Triticum aestivum cultivar Chinese Spring is associated with alteration of gene expression. Genome 64(11): 1009-1020.
    26.  Fedak G, Chi D, Wolfe D, Ouellet T, Cao W, Han F and Xue A. (2021) Transfer of Fusarium Head Blight Resistance from Thinopyrum elongatum to bread wheat cultivar Chinese Spring. Genome 64(11): 997-1008.
    27.  Douglas RN, Yang H, Zhang B, Chen C, Han F, Cheng J, Birchler JA. (2021) De novo centromere formation on chromosome fragments with an inactive centromere in maize (Zea mays). Chromosome Res. 29(3-4): 313-325.
    28.  Liu Y, Su H, Zhang J, Shi L, Liu Y, Zhang B, Bai H, Liang S, Gao Z, Birchler JA and Han F. (2020) Rapid Birth or Death of Centromeres on Fragmented Chromosomes in Maize. Plant Cell 32: 3113-3123.
    29.  Zhang J, Feng C, Su H, Liu Y, Liu Y and Han F. (2020) The Cohesin Complex Subunit ZmSMC Participates in Meiotic Centromere Pairing in Maize. Plant Cell 32: 1323-1336.
    30.  Liu Y, Su H, Zhang J, Liu Y, Feng C and Han F. (2020) Back-spliced RNA from retrotransposon binds to centromere and regulates centromeric chromatin loops in maize. PLoS Biol.18: e3000582.
    31.  Wang J, Shi Q, Guo X and Han F. (2019) Establishment and characterization of a complete set of Triticum durum-Thinopyrum elongatum monosomic addition lines with resistance to Fusarium head blight in wheat. J Genet Genomics 46: 547-549.
    32.  Wang H, Liu Y, Yuan J, Zhang J and Han F. (2019) The condensin subunits SMC2 and SMC4 interact for correct condensation and segregation of mitotic maize chromosomes. Plant J. 102: 467-479.
    33.  Feng C, Yuan J, Bai H, Liu Y, Su H, Liu Y, Shi L, Gao Z, Birchler JA and Han F. (2019) The deposition of CENH3 in maize is stringently regulated. Plant J. 102: 6-17.
    34.  Su H, Liu Y, Liu C, Shi Q, Huang Y and Han F. (2019) Centromere Satellite Repeats Have Undergone Rapid Changes in Polyploid Wheat Subgenomes. Plant Cell 31: 2035-2051.
    35.  Su H, Liu Y, Liu Y, Birchler JA and Han F. (2018) The Behavior of the Maize B Chromosome and Centromere. Genes 9: 476.
    36.  Han F, Lamb JC, McCaw ME, Gao Z, Zhang B, Swyers NC and Birchler JA. (2018) Meiotic Studies on Combinations of Chromosomes With Different Sized Centromeres in Maize. Front Plant Sci. 9: 785.
    37.  Feng C, Su H, Bai H, Wang R, Liu Y, Guo X, Liu C, Zhang J, Yuan J, Birchler JA and Han F. (2018) High-efficiency genome editing using a dmc1 promoter-controlled CRISPR/Cas9 system in maize. Plant Biotechnol J. 16: 1848-1857.
    38.  Birchler JA and Han F. (2018) Barbara McClintock's Unsolved Chromosomal Mysteries: Parallels to Common Rearrangements and Karyotype Evolution. Plant Cell 30: 771-779.
    39.  Yuan J, Shi Q, Guo X, Liu Y, Su H, Guo X, Lv Z and Han F. (2017) Site-specific transfer of chromosomal segments and genes in wheat engineered chromosomes. J Genet Genomics 44: 531-539.
    40.  Liu Y, Su H, Liu Y, Zhang J, Dong Q, Birchler JA and Han F. (2017) Cohesion and centromere activity are required for phosphorylation of histone H3 in maize.Plant J.92: 1121-1131.
    41.  Zhang J and Han F. (2017) Centromere pairing precedes meiotic chromosome pairing in plants. Sci China Life Sci. 60: 1197-1202.
    42.  Wang J, Liu Y, Su H, Guo X and Han F. (2017) Centromere structure and function analysis in wheat-rye translocation lines. Plant J. 91: 199-207.
    43.  Su H, Liu Y, Dong Q, Feng C, Zhang J, Liu Y, Birchler J and Han F. (2017) Dynamic location changes of Bub1-phosphorylated-H2AThr133 with CENH3 nucleosome in maize centromeric regions. New Phytol. 214: 682-694.
    44.  Su H, Liu Y, Liu Y, Lv Z, Xie S, Gao Z, Pang J, Wang X and Han F. (2016) Dynamic chromatin changes associated with de novo centromere formation in maize euchromatin. Plant J. 88: 854-866.
    45.  Guo X, Su H, Shi Q, Fu S, Wang J, Zhang X and Han F. (2016) De nove centromere formation and centromeric sequence expansion in wheat and its wide hybrids. PLoS Genet. 12: e1005997.
    46.  Feng C, Yuan J, Wang R, Liu Y, Birchler J and Han F. (2016) Efficient targeted genome modification in maize using CRISPR/Cas9 system. J Genet Genomics 43: 37-43
    47.  Liu Y, Su H, Pang J, Gao Z, Wang X, Birchler J and Han F. (2015) Sequential de novo centromere formation and inactivation on a chromosomal fragment in maize. Proc Natl Acad Sci U S A 112: 1263-1271.
    48.  Feng C, Liu Y, Su H, Wang H, Birchler J and Han F. (2015) Recent advances in plant centromere biology. Sci China Life Sci. 58: 240-245.
    49.  Guo X, Shi Q, Wang J, Hou Y, Wang Y and Han F. (2015) Characterization and genome changes of new amphiploids from wheat wide hybridization. J Genet Genomics 42: 459-461.
    50.  Guo X and Han F. (2014) Asymmetric epigenetic modification and elimination of rDNA sequences by polyploidization in wheat. Plant Cell 26: 1-18.
    51.  Yuan J, Guo X, Hu J, Lv Z and Han F. (2014) Characterization of two CENH3 genes and their roles in wheat evolution. New Phytol. 206: 839-851.
    52.  Zhang J, Zhang B, Su H, Birchler J and Han F. (2014) Molecular mechanisms of homologous chromoso me pairing and segregation in plants. J Genet Genomics 41: 117-123.
    53.  Zhang B, Dong Q, Su H, Birchler J and Han F. (2014) Histone phosphorylation: its role during cell cycle and centromere identity in plants. Cytogenet Genome Res. 143: 144-149.
    54.  Zhang J, Pawloski W and Han F. (2013) Centromere pairing in early meiotic prophase requires active centromeres and precedes installation of the synaptonemal complex in maize. Plant Cell 25: 3900-3909.
    55.  Fu S, Lv Z, Gao Z, Wu H, Pang J, Zhang B, Dong Q, Guo X, Wang X, Birchler J and Han F. (2013) De novo centromere formation on a chromosome fragment in maize. Proc Natl Acad Sci U S A 110: 6033-6036.
    56.  Zhang B, Lv Z, Pang J, Liu Y, Guo X, Fu S, Li J, Dong Q, Wu H, Gao Z, Wang X and Han F. (2013) A functional centromere after loss of centromeric and gain of ectopic sequences. Plant Cell 25: 1979-1989.
    57.  Zhang H, Bian Y, Gou X, Zhu B, Xu C, Qi B, Li N, Rustgi S, Zhou H, Han F, Jiang J, Wettstein D and Liu B. (2013) Persistent whole-chromosome aneuploidy is generally associated with nascent allohexaploid wheat. Proc Natl Acad Sci U S A 110: 3447-3452.
    58.  Fu S, Lv Z, Guo X, Zhang X and Han F. (2013) Alteration of terminal heterochromatin and chromosome rearrangements in derivatives of wheat-rye hybrids. J Genet Genomics 40: 413-420.
    59.  Birchler J and Han F. (2013) Centromere epigenetics in plants. J Genet Genomics 40: 201-204.
    60.  Gao Z, Han F, Danilova T, Lamb J, Albert P and Birchler J. (2013) Labeling meiotic chromosomes in maize with fluorescence in situ hybridization. Methods Mol Biol. 990: 35-43.
    61.  Masonbrink R, Fu S, Han F and Birchler J. (2013) Heritable loss of replication control of a minichromosome derived from the B chromosome of Maize. Genetics 193: 77-84.
    62.  Dong Q and Han F. (2012) Phosphorylation of H2A is associated with centromere function and maintenance in meiosis. Plant J. 71: 800-809.
    63.  Fu S, Lv Z, Qi B, Guo X, Li J, Liu B and Han F. (2012) Molecular cytogenetic characterization of wheat-Thinopyrum elongatum addition, substitution and translocation lines with a novel source of resistance to wheat Fusarium Head Blight. J Genet Genomics 39: 103-110.
    64.  Fu S, Gao Z, Birchler J and Han F. (2012) Dicentric chromosome formation and epigenetics of centromere formation in plants. J Genet Genomics 39: 125-130.
    65.  Gao Z, Fu S, Dong Q, Han F and Birchler J. (2011) Inactivation of a centromere during the formation of a translocation in maize. Chromosome Res. 19: 755-761.
    66.  Koo D, Han F, Birchler J and Jiang J. (2011) Distinct DNA methylation patterns associated with active and inactive centromeres of the maize B chromosome. Genome Res. 21: 908-914.
    67.  Birchler J, Gao Z, Shanma A, Presting G and Han F. (2011) Epigenetic aspects of centromere function in plants. Curr Opin in Plant Biol. 14: 217-222.
    68.  Yin W, Birchler J and Han F. (2011) Maize centromeres: where sequences meets epigenetics. Frontiers Biol. 6: 102-108.
    69.  Zhao N, Xu L, Li M, Zhang H, Zhu B, Qi B, Xu C, Han F and Liu B. (2011)Chromosomal and genome wide molecular changes associated with initial stages of allohexaploidization in wheat can be transit and incidental. Genome 54: 692-699.
    70.  Zhao N, Zhu B, Li M, Wang L, Xu L, Zhang H, Zheng S, Qi B, Han F and Liu B. (2011) Extensive and heritable epigenetic remodeling and genetic stability accompany allohexaploidization of wheat. Genetics 188: 499-510.
    71.  Han F, Gao Z and Birchler J. (2009) Reactivation of an Inactive Centromere Reveals Epigenetic and Structural Components for Centromere Specification in Maize. Plant Cell 21: 1929-1939.
    72.  Birchler J and Han F. (2009) Maize Centromeres: Structure, Function and Epigenetics. Annu Rev Genet. 43: 287-303.
    73.  Birchler J, Gao Z and Han F. (2009) Pairing in Plant: import is important. Proc Natl Acad Sci USA 106: 19751-19752.
    74.  Wolfgruber T, Sharma A, Schneider K, Albert P, Koo D, Shi J, Gao Z, Han F, Lee H, Xu R, Allison J, Birchler J, Jiang J, Dawe K and Presting G. (2009) Maize centromere structure and evolution: sequence analysis of centromeres 2 and 5 reveals a major role for retrotransposons. PLoS Genetics 5: e1000743.
    75.  Han F, Gao Z, Yu W, and Birchler J. (2007) Minichromosome analysis of chromosome pairing, disjunction and cohesion in maize. Plant Cell 19: 3853-3863.
    76.  Han F, Lamb J, Yu W, Gao Z and Birchler J. (2007) Centromere function and nondisjunction are independent components of the maize B chromosome accumulation mechanism. Plant Cell 19: 524-533.
    77.  Yu W, Lamb J, Han F and Birchler J. (2007) Cytological visualization of DNA transposons and their transposition pattern in somatic cells of maize. Genetics 175: 31-39.
    78.  Yu W, Han F, Vega J, Gao Z and Birchler J. (2007) Construction and behavior of engineered minichromosome in maize. Proc Natl Acad Sci U S A 104: 8924-8929.
    79.  Han F, Lamb J and Birchler J. (2006) High frequency of centromere inactivation resulting in stable dicentric chromosomes of maize. Proc Natl Acad Sci USA 103: 3238-3243.